Skip to main content

Spherical harmonics parametrization for 3D starlike shapes

Project description

AICS Spherical Harmonics Parametrization

Build Status Documentation

Spherical harmonics parametrization for 3D starlike shapes.

Parameterization of cell and nuclear shape

Installation:

Build Dependencies for Python 3.13.*

If you are using Python 3.13.*, you will need to install the following build dependencies:

  • fftw
  • openblas
  • cmake
  • pkg-config

One convenient way to install these dependencies is by using Conda. You can run the following command:

conda install -c conda-forge fftw openblas cmake pkg-config

Stable Release: pip install aicsshparam

Build from source to make customization:

git clone git@github.com:AllenCell/aics-shparam.git
cd aics-shparam
pip install -e .

How to use

Here we outline an example of how one could use spherical harmonics coefficients as shape descriptors on a synthetic dataset composed by 3 different shapes: spheres, cubes and octahedrons.

# Import required packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from aicsshparam import shtools, shparam
from skimage.morphology import ball, cube, octahedron
np.random.seed(42) # for reproducibility
# Function that returns binary images containing one of the three
# shapes: cubes, spheres octahedrons of random sizes.
def get_random_3d_shape():
    idx = np.random.choice([0, 1, 2], 1)[0]
    element = [ball, cube, octahedron][idx]
    label = ['ball', 'cube', 'octahedron'][idx]
    img = element(10 + int(10 * np.random.rand()))
    img = np.pad(img, ((1, 1), (1, 1), (1, 1)))
    img = img.reshape(1, *img.shape)
    # Rotate shapes to increase dataset variability.
    img = shtools.rotate_image_2d(
        image=img,
        angle=360 * np.random.rand()
    ).squeeze()
    return label, img

# Compute spherical harmonics coefficients of shape and store them
# in a pandas dataframe.
df_coeffs = []
for i in range(30):
    # Get a random shape
    label, img = get_random_3d_shape()
    # Parameterize with L=4, which corresponds to50 coefficients
    # in total
    (coeffs, _), _ = shparam.get_shcoeffs(image=img, lmax=4)
    coeffs.update({'label': label})
    df_coeffs.append(coeffs)
df_coeffs = pd.DataFrame(df_coeffs)

# Vizualize the resulting dataframe
with pd.option_context('display.max_rows', 5, 'display.max_columns', 5):
    display(df_coeffs)

Coefficients dataframe

# Let's use PCA to reduce the dimensionality of the coefficients
# dataframe from 51 down to 2.
pca = PCA(n_components=2)
trans = pca.fit_transform(df_coeffs.drop(columns=['label']))
df_trans = pd.DataFrame(trans)
df_trans.columns = ['PC1', 'PC2']
df_trans['label'] = df_coeffs.label

# Vizualize the resulting dataframe
with pd.option_context('display.max_rows', 5, 'display.max_columns', 5):
    display(df_trans)

PCA dataframe

# Scatter plot to show how similar shapes are grouped together.
fig, ax = plt.subplots(1,1, figsize=(3,3))
for label, df_label in df_trans.groupby('label'):
    ax.scatter(df_label.PC1, df_label.PC2, label=label, s=50)
plt.legend(loc='upper left', bbox_to_anchor=(1.05, 1))
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()

PC1 vs. PC2

Reference

For an example of how this package was used to analyse a dataset of over 200k single-cell images at the Allen Institute for Cell Science, please check out our paper in bioaRxiv.

Development

See CONTRIBUTING.md for information related to developing the code.

Questions?

If you have any questions, feel free to leave a comment in our Allen Cell forum: https://forum.allencell.org/.

Free software: Allen Institute Software License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aicsshparam-0.1.11.tar.gz (672.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

aicsshparam-0.1.11-py2.py3-none-any.whl (669.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file aicsshparam-0.1.11.tar.gz.

File metadata

  • Download URL: aicsshparam-0.1.11.tar.gz
  • Upload date:
  • Size: 672.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.21

File hashes

Hashes for aicsshparam-0.1.11.tar.gz
Algorithm Hash digest
SHA256 69e944e9861a6a7434a44cbf0bb453c47e25e2c77ebe79c3a39dd8d5f41e4a09
MD5 9052d1841cfe38a929cc6baae0ecfa8f
BLAKE2b-256 0c1fe11d9b4bae1feac3066f21d603685e5e452cb5e86c39fae0956e92b55a23

See more details on using hashes here.

File details

Details for the file aicsshparam-0.1.11-py2.py3-none-any.whl.

File metadata

  • Download URL: aicsshparam-0.1.11-py2.py3-none-any.whl
  • Upload date:
  • Size: 669.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.21

File hashes

Hashes for aicsshparam-0.1.11-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 006a39d7041e464ddd15499bbed31a7bc5522d93ab2d6fab5b0a0d0e3aa0bb35
MD5 5a1e3d2cf4884216da8bf34f5824eaf4
BLAKE2b-256 c2b8749ca89504c144e36428c5783697ad18a64e6957c8dfc5e563cf85fddb8d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page