Skip to main content

A comprehensive implementation of dynamic time warping (DTW) algorithms. DTW computes the optimal (least cumulative distance) alignment between points of two time series. Common DTW variants covered include local (slope) and global (window) constraints, subsequence matches, arbitrary distance definitions, normalizations, minimum variance matching, and so on. Provides cumulative distances, alignments, specialized plot styles, etc.

Project description

Comprehensive implementation of Dynamic Time Warping algorithms.

DTW is a family of algorithms which compute the local stretch or compression to apply to the time axes of two timeseries in order to optimally map one (query) onto the other (reference). DTW outputs the remaining cumulative distance between the two and, if desired, the mapping itself (warping function). DTW is widely used e.g. for classification and clustering tasks in econometrics, chemometrics and general timeseries mining.

This package provides the most complete, freely-available (GPL) implementation of Dynamic Time Warping-type (DTW) algorithms up to date. It is a faithful Python equivalent of R’s DTW package on CRAN. Supports arbitrary local (e.g. symmetric, asymmetric, slope-limited) and global (windowing) constraints, fast native code, several plot styles, and more.

https://github.com/DynamicTimeWarping/dtw-python/workflows/Build%20and%20upload%20to%20PyPI/badge.svg https://badge.fury.io/py/dtw-python.svg https://codecov.io/gh/DynamicTimeWarping/dtw-python/branch/master/graph/badge.svg

Documentation

Please refer to the main DTW suite homepage for the full documentation and background.

The best place to learn how to use the package (and a hopefully a decent deal of background on DTW) is the companion paper Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package, which the Journal of Statistical Software makes available for free. It includes detailed instructions and extensive background on things like multivariate matching, open-end variants for real-time use, interplay between recursion types and length normalization, history, etc.

To have a look at how the dtw package is used in domains ranging from bioinformatics to chemistry to data mining, have a look at the list of citing papers.

Note: R is the prime environment for the DTW suite. Python’s docstrings and the API below are generated automatically for the sake of consistency and maintainability, and may not be as pretty.

Features

The implementation provides:

  • arbitrary windowing functions (global constraints), eg. the Sakoe-Chiba band and the Itakura parallelogram;

  • arbitrary transition types (also known as step patterns, slope constraints, local constraints, or DP-recursion rules). This includes dozens of well-known types:

  • partial matches: open-begin, open-end, substring matches

  • proper, pattern-dependent, normalization (exact average distance per step)

  • the Minimum Variance Matching (MVM) algorithm (Latecki et al.)

In addition to computing alignments, the package provides:

  • methods for plotting alignments and warping functions in several classic styles (see plot gallery);

  • graphical representation of step patterns;

  • functions for applying a warping function, either direct or inverse;

  • a fast native (C) core.

Multivariate timeseries can be aligned with arbitrary local distance definitions, leveraging the [proxy::dist](https://www.rdocumentation.org/packages/proxy/versions/0.4-23/topics/dist) (R) or [scipy.spatial.distance.cdist](https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html) (Python) functions.

Citation

When using in academic works please cite:

    1. Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Soft., 31 (2009) doi:10.18637/jss.v031.i07.

When using partial matching (unconstrained endpoints via the open.begin/open.end options) and/or normalization strategies, please also cite:

    1. Tormene, T. Giorgino, S. Quaglini, M. Stefanelli (2008). Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation. Artificial Intelligence in Medicine, 45(1), 11-34. doi:10.1016/j.artmed.2008.11.007

Source code

Releases (stable versions) are available in the dtw-python project on PyPi. Development occurs on GitHub at <https://github.com/DynamicTimeWarping/dtw-python>.

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtw-python-1.1.7.tar.gz (229.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dtw_python-1.1.7-cp39-cp39-win_amd64.whl (300.2 kB view details)

Uploaded CPython 3.9Windows x86-64

dtw_python-1.1.7-cp39-cp39-win32.whl (286.1 kB view details)

Uploaded CPython 3.9Windows x86

dtw_python-1.1.7-cp39-cp39-manylinux2010_x86_64.whl (599.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

dtw_python-1.1.7-cp39-cp39-manylinux2010_i686.whl (582.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ i686

dtw_python-1.1.7-cp39-cp39-manylinux1_x86_64.whl (599.3 kB view details)

Uploaded CPython 3.9

dtw_python-1.1.7-cp39-cp39-manylinux1_i686.whl (582.4 kB view details)

Uploaded CPython 3.9

dtw_python-1.1.7-cp39-cp39-macosx_11_0_arm64.whl (292.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

dtw_python-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl (300.9 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

dtw_python-1.1.7-cp39-cp39-macosx_10_9_universal2.whl (368.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

dtw_python-1.1.7-cp38-cp38-win_amd64.whl (300.1 kB view details)

Uploaded CPython 3.8Windows x86-64

dtw_python-1.1.7-cp38-cp38-win32.whl (286.1 kB view details)

Uploaded CPython 3.8Windows x86

dtw_python-1.1.7-cp38-cp38-manylinux2010_x86_64.whl (614.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

dtw_python-1.1.7-cp38-cp38-manylinux2010_i686.whl (596.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

dtw_python-1.1.7-cp38-cp38-manylinux1_x86_64.whl (614.6 kB view details)

Uploaded CPython 3.8

dtw_python-1.1.7-cp38-cp38-manylinux1_i686.whl (596.5 kB view details)

Uploaded CPython 3.8

dtw_python-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl (298.6 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

dtw_python-1.1.7-cp37-cp37m-win_amd64.whl (299.0 kB view details)

Uploaded CPython 3.7mWindows x86-64

dtw_python-1.1.7-cp37-cp37m-win32.whl (285.0 kB view details)

Uploaded CPython 3.7mWindows x86

dtw_python-1.1.7-cp37-cp37m-manylinux2010_x86_64.whl (571.3 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

dtw_python-1.1.7-cp37-cp37m-manylinux2010_i686.whl (555.0 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

dtw_python-1.1.7-cp37-cp37m-manylinux1_x86_64.whl (571.3 kB view details)

Uploaded CPython 3.7m

dtw_python-1.1.7-cp37-cp37m-manylinux1_i686.whl (555.0 kB view details)

Uploaded CPython 3.7m

dtw_python-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl (298.8 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

dtw_python-1.1.7-cp36-cp36m-win_amd64.whl (297.9 kB view details)

Uploaded CPython 3.6mWindows x86-64

dtw_python-1.1.7-cp36-cp36m-win32.whl (283.9 kB view details)

Uploaded CPython 3.6mWindows x86

dtw_python-1.1.7-cp36-cp36m-manylinux2010_x86_64.whl (570.6 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

dtw_python-1.1.7-cp36-cp36m-manylinux2010_i686.whl (552.7 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ i686

dtw_python-1.1.7-cp36-cp36m-manylinux1_x86_64.whl (570.6 kB view details)

Uploaded CPython 3.6m

dtw_python-1.1.7-cp36-cp36m-manylinux1_i686.whl (552.7 kB view details)

Uploaded CPython 3.6m

dtw_python-1.1.7-cp36-cp36m-macosx_10_9_x86_64.whl (297.4 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file dtw-python-1.1.7.tar.gz.

File metadata

  • Download URL: dtw-python-1.1.7.tar.gz
  • Upload date:
  • Size: 229.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw-python-1.1.7.tar.gz
Algorithm Hash digest
SHA256 15a4ba78119f30336e6d2fa93fbf98e64be41ca396342bbebfeee20871b5e259
MD5 9d50222cb5bea0f24455dae2f763dbb4
BLAKE2b-256 a74559f948e95ab880b2a745bd777afc87326c2041d6a112fafcd6bc02bfa0d8

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 300.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2b31c4c7a7c3047bdb0bd6c87c14d35d09cab8765d7f6f25e3c93ba083821836
MD5 db17cdf83c6c919ea1555230603e5c0e
BLAKE2b-256 f5df3c825c1c417b38d844e5194e2bdfc3df18b74b93a4ff49f498315c0f3e50

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 286.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8855128f930098db1bde040bd7bd610eb899e9c9603b1e512fceaa2869830b35
MD5 c3cf8aefb8f7488330d25ea6c76a507f
BLAKE2b-256 3a8efae923a2a140101bd34d966e0cf383d41d1511ed1df34238ffbd55e85db2

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 599.3 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f127dd00b048ac45512a52d467596c23b90aee8805b5cc7c6efb7d0662293516
MD5 2770e9ca40fd77ac0fb85ea252210e50
BLAKE2b-256 f398f8acd67fc9544310438fab21a6fb232509f9e30e07fa073b20ec0e3824c7

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 582.4 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1dc1ba9ed509948066d3695308d4a4f30c33beec0a9a42bdf3e6cd3fd6e045cd
MD5 34a5a8582e5e1e719c26176924658175
BLAKE2b-256 fa2e916014a60b98b81025f40f1ea48498bf5e6338cd0f81292b03226c69b749

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 599.3 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ba94944c7e2ef8a6040a23313b4273a51c756515f4e98a2ab9f4e73b767b10b1
MD5 1b098875bf636eb27ac6149bd572b307
BLAKE2b-256 7470277b3316aff523323d28e30e75028ed9aa77f06f5a91cc67cedd8fd75202

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 582.4 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a34b8525ec4db7abb4175424d8e50ed6740ad4c81fa49e18be60e3807ad1609b
MD5 0d4176160d551ec437ef1f0a14538368
BLAKE2b-256 ba8b0ec1879e0a6834c3ed96eeabf99800f2a3ac56d94dca2cf27de34a02fd95

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 292.5 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ede83628cb1d712c9d2abc0f84d7117cd091d739d1edfd4697340e3dc8169670
MD5 2d1728279063f4d936b0cbc225e8d862
BLAKE2b-256 7e76f0a6bc0dcc58f95c51f85c76c53356fd614eec26b406bcc1ad62a2f26163

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 300.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1d1c5535f0df11134351c1b1c0e982dd7f1a06b4aa7c205dcb1130fab62cc6b
MD5 83bfd924b835b41e6ebeace7d50f5dee
BLAKE2b-256 42345823fa8747d3f830510a04b7b0d15284df87d1bfc03bdd385fe72f46c97e

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 368.5 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1dcce730c9cf16a3cbe4f625e733d7c38cacc969dd62be8c3064d55292b5e61d
MD5 d996fdbbef31e72b995151c17cd29a6d
BLAKE2b-256 f679a655e2438c539966e33c6ff0dd222b5683b9363463a51c07d66e324039a1

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 300.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 10e2575549180f9e9107425979c2a383b831444b7ad89bff0c0bc84e75c9b349
MD5 a09428d1b6df22cbf9a6575ae7a22b1f
BLAKE2b-256 14de26f208f643b1c10f549fdaccc18784eb7995ce8065950d43021379706c5d

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 286.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9916d654137e075d938aeea9da94aaa2cad4733bd8dac828ec2864a78c8892c9
MD5 768c5075f9cbfc38fc8d84567a71694a
BLAKE2b-256 28c0c59a853b1ea3ab4a6030fb5467f3fd3d520239b388b80553aa036a8151e7

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 614.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc2a4fc5be6067f9839be877ba087f774f06427969580668e1ab358d518130e7
MD5 dfcf92d74af8d9a58fe9999676f8ff74
BLAKE2b-256 16a6bd29b87f82bb98a9247c6217630c5c8e2a685949aaab3fe7ac2c46900d34

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 596.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7e669ce3e5eb9e16f28d490ba39ec2b5f65db1941239cefa6554e24a56d3b129
MD5 eabf51b3167aa3d9ab2cf16f0df7218d
BLAKE2b-256 afdcefab05fa49188ae4e675c03fe43a8e7c9048b036f9b16c2acca0f6ef0813

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 614.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cc5321b46529aba3695deadfed4543df8012ee164ed6016876d46a286f823b62
MD5 b8b014cd1010a49c3b3134b60b7664df
BLAKE2b-256 a30f88b6f4ab43fc70636cf06fe2ceadc4fc4bf3b26d33a0142c1fadea85ef96

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 596.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1802b5b4704bb4a00d56a2511069302487c531dd57dae9d38b9ce5e0398524cf
MD5 96fb3f3bf8e211f1d9e1c5ba7ec4c174
BLAKE2b-256 a79ca69e23b713bed239a37fa852e4f379b9a4982215c3216d61cd35c2211cd7

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 298.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e860947d727d765ba440785eec818747791f630b8d5698f0838b31fda7839d2a
MD5 6720c99d7a22fc41f5fef01589a4201d
BLAKE2b-256 4139ec279903d9a915b813a4983c64dd4cfc7a96ae4316560a93b4c1037ddf65

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 299.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 457746dcac2124c6b77b69b9715cdbbdfe4feeb2bc6a07ec9b5a5ab61ee50e19
MD5 4aa7ad6e7aa23efa935c58909eca784a
BLAKE2b-256 d8062fb348dca40acf05e2a3e2b63460040933ae97ed353e916dcf44471873e2

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 285.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ebc9c1d5d4364c9837fa63e7ef5aea40416ddcc6c7d95d42473e1affa943f74a
MD5 8828a03886e46391f46d47618986a2d5
BLAKE2b-256 e4d8af9be8caedceef1996a4ecc2b99e205c7b3b53b758d9f5177f7a2d1fb62c

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 571.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f3cfe0dec394127f79d1820a9a683e2497e10c238aa285e553ba3c019870aaf
MD5 dfc0774f1b20f88c98673734fe901b98
BLAKE2b-256 fc544413ee7ce5019033696bdeabe5153c0c9fb89addc1bc89d49d74df798a81

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 555.0 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e5c59437649f9ff6ad7de8e5353d6f8a1d98b19f2d52a1c53143531c4868da5f
MD5 b977af33749fc5640d6348c77bac5549
BLAKE2b-256 e40c70391a14ce68b99f340ec1d1584d88d3feaa1c3ab90cf1dc2a93d5e42859

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 571.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82dae1441c7b786b8fe347bd73e5bf25936e67094bab191c1a9d31d2d0c63e02
MD5 19a81e9dbee1638d0d2513e6c82f97cf
BLAKE2b-256 d0b00c7a867bcca70d2efed375a259ead9f1ba652625ed5e150a54e4e823a9d8

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 555.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 094a1e6e44842c49c8b04ede2296233a253306f32ce666e1e236fec738faaba7
MD5 ad4a550d6c7eef1ca00211ed0e1d802f
BLAKE2b-256 020b137cfad46175b8512445464a422f13c6c9471572c56dd9850f7e490e3c35

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 298.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77a78393658f24c586b6485fe4844fefc8acdb40fe31df14f6b1b85b455efe38
MD5 b19d5523cef201f7657a7163c099fa52
BLAKE2b-256 a97079307a8cc1cdbc2f445c0011bd0341d490e635212f6ca3c11df1157ed7e9

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 297.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee9084045fa734d4dd1bea0f033e4e4d0307deaf2ab7d28f54b5c3e5ca2ced06
MD5 615ef4b9fd701548ee25297cb81c3d9f
BLAKE2b-256 ead60d58661432968dc319d910229cafcf43c0f5c3e429e25addfd863181f195

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 283.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 50a050c5cdd3a98bd8ba3f25845b7e044d7dbff3839251f4b2d9afe1182fc8c5
MD5 03e5cc1d4fba56ff348612f6438f010c
BLAKE2b-256 86843bf2f7c50e1606feff128ac32088398c10a7665b2ae832867327d5cddad9

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 570.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db0fb024b522622c56e8ed67024c4565ddd9918d26a3408a96d7aeb6679ebe76
MD5 f025a2d72f474d4568d9dd30002d5102
BLAKE2b-256 7f6d2e36e03dc93b777782c07691d69bc3c3d4788c304e8744d10c198eab0b05

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 552.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ce8420757f7da31cecd8eaf27e232982aed5be875e5d4ce9b9d1cdb42ea4dc68
MD5 7da2b375d699225c654ba90e8acde6d2
BLAKE2b-256 4dc97e323792013163c612315466e0e502e69bf4aefd8ff191bb0974cb41a4d5

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 570.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a3e9237d751cb55917579fc415d87ce30bebaa001cf7e81da3049c98d9bff865
MD5 bf419c344261daa4b635dacd5f1ac4cd
BLAKE2b-256 6a8d0ab2885d4d91f4216276332ed9e19fc2d90fb39b08b1d363501587f3898d

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 552.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 45847bbece9b2aedd9b5cce90006ed3b93150056970d86961d41762126ba3dd3
MD5 7ba4f97d33f4d251779b03159f13cea0
BLAKE2b-256 a8022e794e4879166d728634f3c429e57f1b8ce41e2f32c0431aff52717ddac8

See more details on using hashes here.

File details

Details for the file dtw_python-1.1.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 297.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for dtw_python-1.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e8f29e4b6e3f5bb154aff855ac24c391eb7336cf5a3ef01ddfac56473ecf3a8
MD5 edadd542b454f5658af6ce78b5b5b150
BLAKE2b-256 026293cc7be9e59e4faf41abd447690430c7445e524bf4f08945e34fdfec0243

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page