A hyperparameter optimization toolbox for convenient and fast prototyping
Overview |
Performance |
Installation |
Examples |
Hyperactive API |
License
Overview
- Optimize hyperparameters of machine- or deep-learning models, using a simple API.
- Choose from a variety of different optimization techniques to improve your model.
- Utilize advanced features to improve the performance of all optimization techniques.
Performance
The bar chart below shows, that the optimization process itself represents only a small fraction (<0.6%) of the computation time.
The 'No Opt'-bar shows the training time of a default Gradient-Boosting-Classifier normalized to 1. The other bars show the computation time relative to 'No Opt'. Each optimizer did 30 runs of 300 iterations, to get a good statistic.
Installation
Hyperactive is developed and tested in python 3:

Hyperactive is available on PyPi:

pip install hyperactive
Examples
Basic sklearn example:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from hyperactive import SimulatedAnnealingOptimizer
iris_data = load_iris()
X = iris_data.data
y = iris_data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# this defines the model and hyperparameter search space
search_config = {
"sklearn.ensemble.RandomForestClassifier": {
"n_estimators": range(10, 100, 10),
"max_depth": [3, 4, 5, 6],
"criterion": ["gini", "entropy"],
"min_samples_split": range(2, 21),
"min_samples_leaf": range(2, 21),
}
}
Optimizer = SimulatedAnnealingOptimizer(search_config, n_iter=100, n_jobs=4)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)
# predict from test data
prediction = Optimizer.predict(X_test)
# calculate accuracy score
score = Optimizer.score(X_test, y_test)
Example with a multi-layer-perceptron in keras:
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from hyperactive import ParticleSwarmOptimizer
breast_cancer_data = load_breast_cancer()
X = breast_cancer_data.data
y = breast_cancer_data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# this defines the structure of the model and the search space in each layer
search_config = {
"keras.compile.0": {"loss": ["binary_crossentropy"], "optimizer": ["adam"]},
"keras.fit.0": {"epochs": [3], "batch_size": [100], "verbose": [0]},
"keras.layers.Dense.1": {
"units": range(5, 15),
"activation": ["relu"],
"kernel_initializer": ["uniform"],
},
"keras.layers.Dense.2": {
"units": range(5, 15),
"activation": ["relu"],
"kernel_initializer": ["uniform"],
},
"keras.layers.Dense.3": {"units": [1], "activation": ["sigmoid"]},
}
Optimizer = ParticleSwarmOptimizer(
search_config, n_iter=3, metric=["mean_absolute_error"], verbosity=0
)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)
Example with a convolutional neural network in keras:
import numpy as np
from keras.datasets import mnist
from keras.utils import to_categorical
from hyperactive import RandomSearchOptimizer
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
# this defines the structure of the model and the search space in each layer
search_config = {
"keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]},
"keras.fit.0": {"epochs": [20], "batch_size": [500], "verbose": [2]},
"keras.layers.Conv2D.1": {
"filters": [32, 64, 128],
"kernel_size": range(3, 4),
"activation": ["relu"],
"input_shape": [(28, 28, 1)],
},
"keras.layers.MaxPooling2D.2": {"pool_size": [(2, 2)]},
"keras.layers.Conv2D.3": {
"filters": [16, 32, 64],
"kernel_size": [3],
"activation": ["relu"],
},
"keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
"keras.layers.Flatten.5": {},
"keras.layers.Dense.6": {"units": range(30, 200, 10), "activation": ["softmax"]},
"keras.layers.Dropout.7": {"rate": list(np.arange(0.4, 0.8, 0.1))},
"keras.layers.Dense.8": {"units": [10], "activation": ["softmax"]},
}
Optimizer = RandomSearchOptimizer(search_config, n_iter=20)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)
# predict from test data
prediction = Optimizer.predict(X_test)
# calculate accuracy score
score = Optimizer.score(X_test, y_test)
Hyperactive API
Classes:
HillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, r=1e-6)
StochasticHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
TabuOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, tabu_memory=[3, 6, 9])
RandomSearchOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
RandomRestartHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_restarts=10)
RandomAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=100, t_rate=0.98)
SimulatedAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98)
StochasticTunnelingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, gamma=1)
ParallelTemperingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, system_temps=[0.1, 0.2, 0.01], n_swaps=10)
ParticleSwarmOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_part=4, w=0.5, c_k=0.5, c_s=0.9)
EvolutionStrategyOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, individuals=10, mutation_rate=0.7, crossover_rate=0.3)
BayesianOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
General positional argument:
| Argument |
Type |
Description |
| search_config |
dict |
hyperparameter search space to explore by the optimizer |
| n_iter |
int |
number of iterations to perform |
General keyword arguments:
| Argument |
Type |
Default |
Description |
| metric |
str |
"accuracy" |
metric for model evaluation |
| n_jobs |
int |
1 |
number of jobs to run in parallel (-1 for maximum) |
| cv |
int |
5 |
cross-validation |
| verbosity |
int |
1 |
Shows model and metric information |
| random_state |
int |
None |
The seed for random number generator |
| warm_start |
dict |
None |
Hyperparameter configuration to start from |
| memory |
bool |
True |
Stores explored evaluations in a dictionary to save computing time |
| scatter_init |
int |
False |
Chooses better initial position by training on multiple random positions with smaller training dataset (split into int subsets) |
Specific keyword arguments:
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| r |
float |
1e-6 |
acceptance factor |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| tabu_memory |
list |
[3, 6, 9] |
length of short/mid/long-term memory |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| n_restarts |
int |
10 |
number of restarts |
| Argument |
Type |
Default |
Description |
| eps |
int |
100 |
epsilon |
| t_rate |
float |
0.98 |
cooling rate |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| t_rate |
float |
0.98 |
cooling rate |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| t_rate |
float |
0.98 |
cooling rate |
| gamma |
float |
1 |
tunneling factor |
| Argument |
Type |
Default |
Description |
| eps |
int |
1 |
epsilon |
| t_rate |
float |
0.98 |
cooling rate |
| system_temps |
list |
[0.1, 0.2, 0.01] |
initial temperatures (number of elements defines number of systems) |
| n_swaps |
int |
10 |
number of swaps |
| Argument |
Type |
Default |
Description |
| n_part |
int |
1 |
number of particles |
| w |
float |
0.5 |
intertia factor |
| c_k |
float |
0.8 |
cognitive factor |
| c_s |
float |
0.9 |
social factor |
| Argument |
Type |
Default |
Description |
| individuals |
int |
10 |
number of individuals |
| mutation_rate |
float |
0.7 |
mutation rate |
| crossover_rate |
float |
0.3 |
crossover rate |
| Argument |
Type |
Default |
Description |
| kernel |
class |
Matern |
Kernel used for the gaussian process |
General methods:
fit(self, X_train, y_train)
| Argument |
Type |
Description |
| X_train |
array-like |
training input features |
| y_train |
array-like |
training target |
predict(self, X_test)
| Argument |
Type |
Description |
| X_test |
array-like |
testing input features |
score(self, X_test, y_test)
| Argument |
Type |
Description |
| X_test |
array-like |
testing input features |
| y_test |
array-like |
true values |
export(self, filename)
| Argument |
Type |
Description |
| filename |
str |
file name and path for model export |
Available Metrics:
| Scores |
Losses |
| accuracy_score |
brier_score_loss |
| balanced_accuracy_score |
log_loss |
| average_precision_score |
max_error |
| f1_score |
mean_absolute_error |
| recall_score |
mean_squared_error |
| jaccard_score |
mean_squared_log_error |
| roc_auc_score |
median_absolute_error |
| explained_variance_score |
|
License
