Skip to main content

💟 Lovely numpy

Project description

💟 Lovely NumPy

More lovely stuff

Working with numbers
Proompting
Community

Install

pip install lovely-numpy

or

conda install -c conda-forge lovely-numpy

How to use

How often do you find yourself debugging NumPy code? You dump your variable to the cell output, and see this:

numbers
array([[[-0.3541, -0.1975, -0.6715],
        [-0.3369, -0.1975, -0.9853],
        ...,
        [-0.4739, -0.3725, -0.689 ],
        [ 2.2489,  2.4111,  2.396 ]],

       [[-0.4054, -0.25  , -0.7238],
        [-0.4226, -0.2325, -1.0724],
        ...,
        [-0.8507, -0.6702, -1.0201],
        [ 2.1633,  2.3585,  2.3263]],

       ...,

       [[-0.8507, -0.3901, -1.1944],
        [-0.7822, -0.2325, -1.4559],
        ...,
        [-1.5014, -1.2304, -1.4733],
        [ 2.1804,  2.4111,  2.4308]],

       [[-0.8335, -0.4076, -1.2293],
        [-0.8164, -0.285 , -1.5256],
        ...,
        [-1.5528, -1.2829, -1.5256],
        [ 2.1119,  2.341 ,  2.3611]]], dtype=float32)

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

from lovely_numpy import lo

Lo and behold!

lo(numbers)
array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, eh?

lo(numbers[1,:6,1]) # Still shows values if there are not too many.
array[6] f32 x∈[-0.408, -0.232] μ=-0.340 σ=0.075 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
spicy = numbers[0,:12,0].copy()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
lo(spicy) # Spicy stuff
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
lo(np.zeros((10, 10))) # A zero array - make it obvious
array[10, 10] n=100 all_zeros
lo(spicy, verbose=True)
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
array([[-3540.5432,    -0.    , ...,        nan,    -0.4054],
       [   -0.4226,    -0.4911, ...,    -0.5424,    -0.5082]],
      dtype=float32)

Going .deeper

lo(numbers.transpose(2,1,0)).deeper
array[3, 196, 196] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  array[196, 196] f32 n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  array[196, 196] f32 n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  array[196, 196] f32 n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
lo(numbers[:3,:4]).deeper(2)
array[3, 4, 3] f32 n=36 x∈[-1.125, -0.197] μ=-0.563 σ=0.280
  array[4, 3] f32 n=12 x∈[-0.985, -0.197] μ=-0.487 σ=0.259
    array[3] f32 x∈[-0.672, -0.197] μ=-0.408 σ=0.197 [-0.354, -0.197, -0.672]
    array[3] f32 x∈[-0.985, -0.197] μ=-0.507 σ=0.343 [-0.337, -0.197, -0.985]
    array[3] f32 x∈[-0.881, -0.303] μ=-0.530 σ=0.252 [-0.405, -0.303, -0.881]
    array[3] f32 x∈[-0.776, -0.303] μ=-0.506 σ=0.199 [-0.440, -0.303, -0.776]
  array[4, 3] f32 n=12 x∈[-1.072, -0.232] μ=-0.571 σ=0.281
    array[3] f32 x∈[-0.724, -0.250] μ=-0.460 σ=0.197 [-0.405, -0.250, -0.724]
    array[3] f32 x∈[-1.072, -0.232] μ=-0.576 σ=0.360 [-0.423, -0.232, -1.072]
    array[3] f32 x∈[-0.968, -0.338] μ=-0.599 σ=0.268 [-0.491, -0.338, -0.968]
    array[3] f32 x∈[-0.968, -0.408] μ=-0.651 σ=0.235 [-0.577, -0.408, -0.968]
  array[4, 3] f32 n=12 x∈[-1.125, -0.285] μ=-0.631 σ=0.280
    array[3] f32 x∈[-0.828, -0.303] μ=-0.535 σ=0.219 [-0.474, -0.303, -0.828]
    array[3] f32 x∈[-1.125, -0.285] μ=-0.628 σ=0.360 [-0.474, -0.285, -1.125]
    array[3] f32 x∈[-1.020, -0.390] μ=-0.651 σ=0.268 [-0.542, -0.390, -1.020]
    array[3] f32 x∈[-1.003, -0.478] μ=-0.708 σ=0.219 [-0.645, -0.478, -1.003]

Now in .rgb color

The important queston - is it our man?

lo(numbers).rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean 
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
lo(numbers).rgb(denorm=in_stats)

It’s indeed our hero, the Tenchman!

See the .chans

# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = np.array(in_stats[0])
std = np.array(in_stats[1])
numbers_01 = (numbers*std + mean).clip(0,1)
lo(numbers_01)
array[196, 196, 3] n=115248 (0.9Mb) x∈[0., 1.000] μ=0.361 σ=0.248
lo(numbers_01).chans

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (np.stack([numbers]*8) + np.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
                     *np.array(in_stats[1])
                     +np.array(in_stats[0])
                ).clip(0,1).reshape(2,2,2,196,196,3)
            
lo(eight_images)
array[2, 2, 2, 196, 196, 3] n=921984 (7.0Mb) x∈[0., 1.000] μ=0.382 σ=0.319
lo(eight_images).rgb

Histogram

lo(numbers+3).plt

lo(numbers+3).plt(center="mean", max_s=1000)

lo(numbers+3).plt(center="range")

Options | Docs

from lovely_numpy import set_config, config, lovely
set_config(precision=5, sci_mode=True, color=False)
lo(np.array([1.,2,np.nan]))
array[3] μ=1.50000e+00 σ=5.00000e-01 NaN! [1.00000e+00, 2.00000e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
lo(np.array([1.,2,np.nan]))
array[3] μ=1.500 σ=0.500 NaN! [1.000, 2.000, nan]
# Or with config context manager.
with config(sci_mode=True):
    print(lo(np.array([1,2,3])))

print(lo(np.array([1,2,3])))
array[3] i64 x∈[1, 3] μ=2.000e+00 σ=8.165e-01 [1, 2, 3]
array[3] i64 x∈[1, 3] μ=2.000 σ=0.816 [1, 2, 3]

Default str and repr

set_config(repr=lovely)
print(np.array([1, 2, 3])) # Note: print() calls str(). Cell output is repr()
print(repr(np.array([1, 2, 3]))) # See docs if you want to only set `repr`` or `str``
array[3] i64 x∈[1, 3] μ=2.000 σ=0.816 [1, 2, 3]
array[3] i64 x∈[1, 3] μ=2.000 σ=0.816 [1, 2, 3]
lo(np.array([1, 2, 3])).p # To see the plain values
array([1, 2, 3])

Without Lo

from lovely_numpy import rgb, chans, plot
lovely(numbers) # Returns `str`, that's why you see ''.
# Note:  lo(x) returns a wrapper object with a `__repr__` and other methods.
'array[196, 196, 3] f32 n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073'
rgb(numbers, denorm=in_stats)

chans(numbers*0.3+0.5)

plot(numbers)

Matplotlib integration | Docs

lo(numbers).rgb(in_stats).fig # matplotlib figure

lo(numbers).plt.fig.savefig('pretty.svg') # Save it
!file pretty.svg; rm pretty.svg
pretty.svg: SVG Scalable Vector Graphics image
fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])

ax2.set_axis_off()
ax3.set_axis_off()

lo(numbers_01).plt(ax=ax1)
lo(numbers_01).rgb(ax=ax2)
lo(numbers_01).chans(ax=ax3);

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-numpy-0.2.12.tar.gz (24.3 kB view hashes)

Uploaded Source

Built Distribution

lovely_numpy-0.2.12-py3-none-any.whl (24.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page