Skip to main content

Python Driver for ArangoDB

Project description

Logo

CircleCI CodeQL Docs Coverage Status Last commit

PyPI version badge Python versions badge

License Code style: black Downloads

Python-Arango

Python driver for ArangoDB, a scalable multi-model database natively supporting documents, graphs and search.

If you're interested in using asyncio, please check python-arango-async.

Requirements

  • ArangoDB version 3.11+
  • Python version 3.9+

Installation

pip install python-arango --upgrade

Getting Started

Here is a simple usage example:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "_system" database as root user.
sys_db = client.db("_system", username="root", password="passwd")

# Create a new database named "test".
sys_db.create_database("test")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new collection named "students".
students = db.create_collection("students")

# Add a persistent index to the collection.
students.add_index({'type': 'persistent', 'fields': ['name'], 'unique': True})

# Insert new documents into the collection.
students.insert({"name": "jane", "age": 39})
students.insert({"name": "josh", "age": 18})
students.insert({"name": "judy", "age": 21})

# Execute an AQL query and iterate through the result cursor.
cursor = db.aql.execute("FOR doc IN students RETURN doc")
student_names = [document["name"] for document in cursor]

Another example with graphs:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new graph named "school".
graph = db.create_graph("school")

# Create a new EnterpriseGraph [Enterprise Edition]
eegraph = db.create_graph(
    name="school",
    smart=True)

# Create vertex collections for the graph.
students = graph.create_vertex_collection("students")
lectures = graph.create_vertex_collection("lectures")

# Create an edge definition (relation) for the graph.
edges = graph.create_edge_definition(
    edge_collection="register",
    from_vertex_collections=["students"],
    to_vertex_collections=["lectures"]
)

# Insert vertex documents into "students" (from) vertex collection.
students.insert({"_key": "01", "full_name": "Anna Smith"})
students.insert({"_key": "02", "full_name": "Jake Clark"})
students.insert({"_key": "03", "full_name": "Lisa Jones"})

# Insert vertex documents into "lectures" (to) vertex collection.
lectures.insert({"_key": "MAT101", "title": "Calculus"})
lectures.insert({"_key": "STA101", "title": "Statistics"})
lectures.insert({"_key": "CSC101", "title": "Algorithms"})

# Insert edge documents into "register" edge collection.
edges.insert({"_from": "students/01", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/01", "_to": "lectures/STA101"})
edges.insert({"_from": "students/01", "_to": "lectures/CSC101"})
edges.insert({"_from": "students/02", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/02", "_to": "lectures/STA101"})
edges.insert({"_from": "students/03", "_to": "lectures/CSC101"})

# Traverse the graph in outbound direction, breath-first.
query = """
    FOR v, e, p IN 1..3 OUTBOUND 'students/01' GRAPH 'school'
    OPTIONS { bfs: true, uniqueVertices: 'global' }
    RETURN {vertex: v, edge: e, path: p}
    """
cursor = db.aql.execute(query)

Please see the documentation for more details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_arango-8.3.0.tar.gz (154.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

python_arango-8.3.0-py3-none-any.whl (116.2 kB view details)

Uploaded Python 3

File details

Details for the file python_arango-8.3.0.tar.gz.

File metadata

  • Download URL: python_arango-8.3.0.tar.gz
  • Upload date:
  • Size: 154.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for python_arango-8.3.0.tar.gz
Algorithm Hash digest
SHA256 3b89268f50c816aabc7b2651cdb2b980919cc547490f5d37a3124f8fccfc08be
MD5 764c4a3153034cf04b4df41a17d3c770
BLAKE2b-256 192b2849beef8f9d2a57fa6305033dd91cb52628eb3e3f7d825b02812e207b00

See more details on using hashes here.

File details

Details for the file python_arango-8.3.0-py3-none-any.whl.

File metadata

  • Download URL: python_arango-8.3.0-py3-none-any.whl
  • Upload date:
  • Size: 116.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for python_arango-8.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4c8bb1d859a39152dd69a7ee03c6702cdcb62f0bb19060d4ffa219a9b425b526
MD5 ffe2a9fa5696f387456c841b355d180a
BLAKE2b-256 cac80eadc927b2e281dfdce1348ddffdc177dc75b7ba2f024dd9dae96522de3d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page