Image processing library powered by Intel(R) IPP
Project description
scikit-IPP (skipp)
scikit-ipp is optimization of open-source image processing library scikit-image by using Intel® Integrated Performance Primitives (Intel® IPP) library.
scikit-ipp is a standalone package, provided scikit-image-like API to some of Intel® IPP functions.
Getting started
scikit-ipp is easily built from source with the majority of the necessary prerequisites available on conda. The instructions below detail how to gather the prerequisites, setting one's build environment, and finally building and installing the completed package. scikit-ipp can be built for all three major platforms (Windows, Linux, macOS).
The build-process (using setup.py) happens in 2 stages:
- Running cython on C and Cython sources
- Compiling and linking
Building scikit-ipp using conda-build
The easiest way to build scikit-ipp is using the conda-build with the provided recipe.
Prerequisites
- Python version >= 3.6
- conda-build version >= 3
- C compiler
Building scikit-ipp
cd <checkout-dir>
conda build -c intel conda-recipe
This will build the conda package and tell you where to find it (.../scikit-ipp*.tar.bz2).
Installing the built scikit-ipp conda package
conda install <path-to-conda-package-as-built-above>
To actually use your scikit-ipp, dependent packages need to be installed. To ensure, do
Linux or Windows:
conda install -c intel numpy ipp
Building documentation for scikit-ipp
Prerequisites for creating documentation
- sphinx >= 3.0
- sphinx_rtd_theme >= 0.4
- sphinx-gallery >= 0.3.1
- matplotlib > = 3.0.1
Building documentation
- Install scikit-ipp into your python environment
cd doc && make html- The documentation will be in
doc/_build/html
Examples
Introductory examples for scikit-ipp link
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 151.0 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.6.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4568af5251af91a6eeee491a91f98f4236701aff641bda8c2a45234242055d92
|
|
| MD5 |
f8ecc3a70ba3c9ff8db263ba7fa83003
|
|
| BLAKE2b-256 |
45e8ed2b93601bc9285e96830fa6b4ab401aac09ffb9bac9d678e28986421856
|
File details
Details for the file scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl
- Upload date:
- Size: 258.9 kB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.6.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
309c6de3b56fcfaa27a73a1428c46bbffa853518d77d57c8182df977b806e10f
|
|
| MD5 |
000ca47f16fe6abb47c787841b18902e
|
|
| BLAKE2b-256 |
0a63bbe536f3fac13113417d8fa13580c80a9063ab1f727a664d6e35a04970e7
|
File details
Details for the file scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 154.4 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6fdc34931af0b5fa31b61fcdf35f41c86512b1aef1259d9a09ca77124c6b4a19
|
|
| MD5 |
197948b2c77370092fb24b28ba6c3b0c
|
|
| BLAKE2b-256 |
f9c5d6677f0629fdda296ed764958e3f511d16f979dc6141cc1198e575172e45
|
File details
Details for the file scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl
- Upload date:
- Size: 258.0 kB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ef125e71dd88680123b3569cb677f658c19d8727347b46a23d845358103e8098
|
|
| MD5 |
18ab75fa760952027b30a161cea9db94
|
|
| BLAKE2b-256 |
037dd159a85b977bc7bdbe22f84744291790f7a925f6794e36b5266a717301c6
|
File details
Details for the file scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 149.9 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3536094170887a755be0294d36eedcb54c33c0aaf5e2fcfbfc86531c80589f5e
|
|
| MD5 |
3e8a13aa0a6ea60ad7dc6e561d0952b0
|
|
| BLAKE2b-256 |
aad7bfc1c491e54cbc33614410b8e7a64b325ba8c32323bf65d427716781cef1
|
File details
Details for the file scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl
- Upload date:
- Size: 251.0 kB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
45d825f2ddb07e38532a8ed65746e81d8293e105f9d344b73fedd735e78ec3bd
|
|
| MD5 |
b9ce46247ea49c6e5a224bed48b19ee4
|
|
| BLAKE2b-256 |
bc92a18e0a730b20d4c9d1aa11314a1396ba299c113a0b95800f97c465e53682
|
File details
Details for the file scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 149.2 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
83754a9d214ef6082c37d7177dbb400e8244f7dd9661ecf90ea91844aa40c245
|
|
| MD5 |
623a37c5d1e471192dd7644ac1566647
|
|
| BLAKE2b-256 |
ed0deb13aef4ee85322f3aafe942b68c6bab5d6750c8506c38432bffd29e2819
|
File details
Details for the file scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl.
File metadata
- Download URL: scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl
- Upload date:
- Size: 250.3 kB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200925 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a8783f4c2c07e5138a19e4fe66b0a37704bec0008bf85512f7849e04565bef8b
|
|
| MD5 |
696df59fbf546216155f2f8cc1a603e5
|
|
| BLAKE2b-256 |
3ef2a3795e69745e9d099e663f65d1bfc2c6a4dab98864e9c62adf6ba9bfc60f
|