Skip to main content

xarray extension for typed DataArray and Dataset creation

Project description

xarray-dataclasses

PyPI Python Test License

xarray extension for typed DataArray and Dataset creation

TL;DR

xarray-dataclasses is a Python package for creating typed DataArray and Dataset classes using the Python's dataclass. Here is an example code of what the package provides:

from dataclasses import dataclass
from xarray_dataclasses import AsDataArray, Coord, Data


@dataclass
class Image(AsDataArray):
    """DataArray that represents a 2D image."""

    data: Data[tuple['x', 'y'], float]
    x: Coord['x', int] = 0
    y: Coord['y', int] = 0


# create a DataArray instance
image = Image.new([[0, 1], [2, 3]], x=[0, 1], y=[0, 1])


# create a DataArray instance filled with ones
ones = Image.ones((2, 2), x=[0, 1], y=[0, 1])

Features

  • DataArray or Dataset instances with fixed dimensions, data type, and coordinates can easily be created.
  • NumPy-like special functions such as ones() are provided as class methods.
  • Compatible with the Python's dataclass.
  • Compatible with static type check by Pyright.

Installation

$ pip install xarray-dataclasses

Introduction

xarray is useful for handling labeled multi-dimensional data, but it is a bit troublesome to create a DataArray or Dataset instance with fixed dimensions, data type, or coordinates (referred to as typed DataArray or typed Dataset, hereafter). For example, let us think about the following specifications of DataArray instances:

  • Dimensions of data must be ('x', 'y').
  • Data type of data must be float.
  • Data type of dimensions must be int.
  • Default value of dimensions must be 0.

Then a function to create a typed DataArray instance is something like this:

import numpy as np
import xarray as xr


def typed_dataarray(data, x=None, y=None):
    """Create a typed DataArray instance."""
    data = np.array(data)

    if x is None:
        x = np.zeros(data.shape[0])
    else:
        x = np.array(x)

    if y is None:
        y = np.zeros(data.shape[1])
    else:
        y = np.array(y)

    return xr.DataArray(
        data=data.astype(float),
        dims=('x', 'y'),
        coords={
            'x': ('x', x.astype(int)),
            'y': ('y', y.astype(int)),
        },
    )


dataarray = typed_dataarray([[0, 1], [2, 3]])

The issues are (1) it is hard to figure out the specs from the code and (2) it is hard to reuse the code, for example, to add a new coordinate to the original specs.

xarray-dataclasses resolves them by defining the specs as a dataclass with dedicated type hints:

from dataclasses import dataclass
from xarray_dataclasses import AsDataArray, Coord, Data


@dataclass
class Specs(AsDataArray):
    data: Data[tuple['x', 'y'], float]
    x: Coord['x', int] = 0
    y: Coord['y', int] = 0


dataarray = Specs.new([[0, 1], [2, 3]])

The specs are now much easier to read: The type hints, Data[<dims>, <dtype>] and Coord[<dims>, <dtype>], have complete information of DataArray creation. The default values are given as class variables.

AsDataArray is a mix-in class that provides class methods such as new(). The extension of the specs is then easy by class inheritance.

Basic usage

xarray-dataclasses uses the Python's dataclass (please learn how to use it before proceeding). Data (or data variables), coordinates, attribute members, and name of a DataArray or Dataset instance are defined as dataclass fields with the following dedicated type hints.

Data type

Data[<dims>, <dtype>] specifies the field whose value will become the data of a DataArray instance or a member of the data variables of a Dataset instance. It accepts two type variables, <dims> and <dtype>, for fixing dimensions and data type, respectively. For example:

Type hint Inferred dims Inferred dtype
Data['x', typing.Any] ('x',) None
Data['x', int] ('x',) numpy.dtype('int64')
Data['x', float] ('x',) numpy.dtype('float64')
Data[tuple['x', 'y'], float] ('x', 'y') numpy.dtype('float64')

Note: for Python 3.7 and 3.8, use typing.Tuple[...] instead of tuple[...].

Coord type

Coord[<dims>, <dtypes>] specifies the field whose value will become a coordinate of a DataArray or Dataset instance. Similar to Data, it accepts two type variables, <dims> and <dtype>, for fixing dimensions and data type, respectively.

Attr type

Attr[<type>] specifies the field whose value will become a member of the attributes (attrs) of a DataArray or Dataset instance. It accepts a type variable, <type>, for specifying the type of the value.

Name type

Name[<type>] specifies the field whose value will become the name of a DataArray. It accepts a type variable, <type>, for specifying the type of the value.

DataArray class

DataArray class is a dataclass that defines DataArray creation. For example:

from dataclasses import dataclass
from xarray_dataclasses import AsDataArray, Attr, Coord, Data, Name


@dataclass
class Image(AsDataArray):
    """DataArray that represents a 2D image."""

    data: Data[tuple['x', 'y'], float]
    x: Coord['x', int] = 0
    y: Coord['y', int] = 0
    units: Attr[str] = 'dimensionless'
    name: Name[str] = 'default'

where exactly one Data-type field is allowed. If more than two Data-type fields exist, the second and subsequent fields are ignored. A typed DataArray instance is created by a shorthand method, new():

Image.new([[0, 1], [2, 3]], x=[0, 1], y=[0, 1])

<xarray.DataArray 'default' (x: 2, y: 2)>
array([[0., 1.],
       [2., 3.]])
Coordinates:
  * x        (x) int64 0 1
  * y        (y) int64 0 1
Attributes:
    units:    dimensionless

DataArray class has NumPy-like empty(), zeros(), ones(), full() methods:

Image.ones((3, 3), name='flat')

<xarray.DataArray 'flat' (x: 3, y: 3)>
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])
Coordinates:
  * x        (x) int64 0 0 0
  * y        (y) int64 0 0 0
Attributes:
    units:    dimensionless

Dataset class

Dataset class is a dataclass that defines Dataset creation. For example:

from dataclasses import dataclass
from xarray_dataclasses import AsDataset, Attr, Coord, Data


@dataclass
class ColorImage(AsDataset):
    """Dataset that represents a 2D color image."""

    red: Data[tuple['x', 'y'], float]
    green: Data[tuple['x', 'y'], float]
    blue: Data[tuple['x', 'y'], float]
    x: Coord['x', int] = 0
    y: Coord['y', int] = 0
    units: Attr[str] = 'dimensionless'

where multiple Data-type fields are allowed. A typed Dataset instance is created by a shorthand method, new():

ColorImage.new(
    [[0, 0], [0, 0]],  # red
    [[1, 1], [1, 1]],  # green
    [[2, 2], [2, 2]],  # blue
)

<xarray.Dataset>
Dimensions:  (x: 2, y: 2)
Coordinates:
  * x        (x) int64 0 0
  * y        (y) int64 0 0
Data variables:
    red      (x, y) float64 0.0 0.0 0.0 0.0
    green    (x, y) float64 1.0 1.0 1.0 1.0
    blue     (x, y) float64 2.0 2.0 2.0 2.0
Attributes:
    units:    dimensionless

Advanced usage

Dataof and Coordof and types

xarray-dataclasses provides advanced type hints, Dataof and Coordof. Unlike Data and Coord, they receives a dataclass that defines a DataArray class. This is useful, for example, when users want to add metadata to dimensions for plotting. For example:

@dataclass
class XAxis:
    data: Data['x', int]
    long_name: Attr[str] = 'x axis'
    units: Attr[str] = 'pixel'


@dataclass
class YAxis:
    data: Data['y', int]
    long_name: Attr[str] = 'y axis'
    units: Attr[str] = 'pixel'


@dataclass
class Image(AsDataArray):
    data: Data[tuple['x', 'y'], float]
    x: Coordof[XAxis] = 0
    y: Coordof[YAxis] = 0


@dataclass
class ColorImage(AsDataset):
    red: Dataof[Image]
    green: Dataof[Image]
    blue: Dataof[Image]

Custom DataArray or Dataset factory

Users can use a custom DataArray or Dataset factory by defining a special class attribute, __dataarray_factory__, or __dataset_factory__. For example:

import xarray as xr


class Custom(xr.DataArray):
    __slots__ = ()

    def custom_method(self) -> None:
        print('Custom method!')


@dataclass
class Image(AsDataArray):
    data: Data[tuple['x', 'y'], float]
    x: Coord['x', int] = 0
    y: Coord['y', int] = 0
    __dataarray_factory__ = Custom


image = Image.ones([3, 3])
image.custom_method() # Custom method!

Note on static type check by Pyright

If users want to make your code compatible with Pyright, please use typing.Literal for defining dimensions. For example:

from typing import Literal


X = Literal['x']
Y = Literal['y']


@dataclass
class Image(AsDataArray):
    data: Data[tuple[X, Y], float]
    x: Coord[X, int] = 0
    y: Coord[Y, int] = 0

Note: for Python 3.7 and 3.8, use typing_extension.Literal instead.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-dataclasses-0.4.0.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

xarray_dataclasses-0.4.0-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file xarray-dataclasses-0.4.0.tar.gz.

File metadata

  • Download URL: xarray-dataclasses-0.4.0.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.11 Linux/5.8.0-1039-azure

File hashes

Hashes for xarray-dataclasses-0.4.0.tar.gz
Algorithm Hash digest
SHA256 9557feac2dbef6b8dd902c05ceea7e3c281af9a312192ef16062137efa76319e
MD5 e94b6e04653b31669889832abcab050d
BLAKE2b-256 c3873cbdf403c30ab3aba6378508c3f776e8a0332a2032cbd58b0d2c8068407b

See more details on using hashes here.

File details

Details for the file xarray_dataclasses-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: xarray_dataclasses-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.11 Linux/5.8.0-1039-azure

File hashes

Hashes for xarray_dataclasses-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 056f3a6b27783194f521524bfdf6163b19c5771f96c15774899c0f023c6abb81
MD5 05a30e857beb3174564b8c38736a77e2
BLAKE2b-256 de66fb1f3af9b0a9b5a091ec7d20135b9c120a37e07cc5bcfdcd66788c869a1e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page