Skip to main content

PyWavelets, wavelet transform module

Project description

PyWavelets is a Python wavelet transforms module that includes:

  • nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Tranfsorm

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Results compatibility with Matlab Wavelet Toolbox (tm)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

PyWavelets-0.5.1.zip (4.5 MB view details)

Uploaded Source

PyWavelets-0.5.1.tar.gz (4.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

PyWavelets-0.5.1-cp36-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.6Windows x86-64

PyWavelets-0.5.1-cp36-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.6Windows x86

PyWavelets-0.5.1-cp36-cp36m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m

PyWavelets-0.5.1-cp36-cp36m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m

PyWavelets-0.5.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

PyWavelets-0.5.1-cp35-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.5Windows x86-64

PyWavelets-0.5.1-cp35-none-win32.whl (998.1 kB view details)

Uploaded CPython 3.5Windows x86

PyWavelets-0.5.1-cp35-cp35m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.5m

PyWavelets-0.5.1-cp35-cp35m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.5m

PyWavelets-0.5.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

PyWavelets-0.5.1-cp34-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.4Windows x86-64

PyWavelets-0.5.1-cp34-none-win32.whl (994.6 kB view details)

Uploaded CPython 3.4Windows x86

PyWavelets-0.5.1-cp34-cp34m-manylinux1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.4m

PyWavelets-0.5.1-cp34-cp34m-manylinux1_i686.whl (2.5 MB view details)

Uploaded CPython 3.4m

PyWavelets-0.5.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

PyWavelets-0.5.1-cp27-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 2.7Windows x86-64

PyWavelets-0.5.1-cp27-none-win32.whl (1.0 MB view details)

Uploaded CPython 2.7Windows x86

PyWavelets-0.5.1-cp27-cp27mu-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7mu

PyWavelets-0.5.1-cp27-cp27mu-manylinux1_i686.whl (2.4 MB view details)

Uploaded CPython 2.7mu

PyWavelets-0.5.1-cp27-cp27m-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 2.7m

PyWavelets-0.5.1-cp27-cp27m-manylinux1_i686.whl (2.4 MB view details)

Uploaded CPython 2.7m

PyWavelets-0.5.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file PyWavelets-0.5.1.zip.

File metadata

  • Download URL: PyWavelets-0.5.1.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyWavelets-0.5.1.zip
Algorithm Hash digest
SHA256 5483f14dd93e627f61b5f3a0dd8ec773c732c13afe5d9761c46a39b002a5cdd2
MD5 09dba2a6c3da9190ff01b9d4cc8a7ed0
BLAKE2b-256 719b931a84896fa900adcd88c16475e506969a20bc6174fc3ca9472d76af0d06

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1.tar.gz.

File metadata

  • Download URL: PyWavelets-0.5.1.tar.gz
  • Upload date:
  • Size: 4.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyWavelets-0.5.1.tar.gz
Algorithm Hash digest
SHA256 7b0634e3588f1d1f9c8bceaf366c8d61bb7e2869096652eb3ca66f723659c9a6
MD5 7a0388f56dbbbea037c779bc3fd32c33
BLAKE2b-256 afa7310108f76adc8d4d91a7b685bc37f62d5b3475f72b31f20730cfdee68534

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 47ebf37f35f6a6d667a15c259c15bb028a4884dbff71f51295b3ccf1e71ef6a3
MD5 e0e7a78e46ee69f2fb964da0ef43db97
BLAKE2b-256 d85f1a63806d907a1741384f5928fe8d4e50a4df7a215a338f102da40efe6fc5

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp36-none-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 93068fa3284236e51802c9b9ea1506fa64d69aa70f95be831b3ff49280721627
MD5 0acdbb18a631bab7c393721d0456c49b
BLAKE2b-256 3756e545fb267207c0ed230654828d19233296bdd72c85ada779ce09e91e3f72

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 26ef79d8efb47dcabd771a1b6e408494037e1362154fb1730273841af77a7b4f
MD5 1aa9f790d372ecf50281f263f7e09ea4
BLAKE2b-256 559a4599eee52722230eb4047c2a3f0412ab92dc1e7b9e704d4819c170ea6380

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 810abd51cf61bb5e8a98190bc1f66e390ea94720205c1ce30224dbd07c949386
MD5 da9d70eb0adc0bf6403f7cf23d5edc5b
BLAKE2b-256 94dfb56932a2a3a6d6bf1a2cbc277de9d0ba2482ba08d6d8a029150bfbf4db4b

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7140d7b1553b167a06e3e2cfdf0a65b158786ff2356df5dade7923f23f21e56e
MD5 2cc99d80d830d035c3fed95579dec95d
BLAKE2b-256 efe7e8aa31b2a1367c7b903d72f164fcb2f492a61a863719acd5b907bd014d11

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 62a129bfb6cfb6a2aab28b37b79fe8dcca1b7915176afbf62123c441c410138a
MD5 d7e4f30d007d94c7775aecc5c302fc70
BLAKE2b-256 29dcc447fcb33365a5cfe82cbfc1a2d5f724ed5492d9a1a151b66ff5152b66a4

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 7345ec382b4f9144614d2680850e9bfaf5a3863c548deb8b559c1dcb09945777
MD5 edb122f9ed6a91346d1ee182288ee4ae
BLAKE2b-256 78c6a2cdbe70c4102e9f694080cbc3f3e68f599889359c5cfb537b1d52fd6a81

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b3602cecaa0ed72bc119d214fef675dcf676e6978ddabbf47ee9863d4d472da1
MD5 db73858d514c0d9b18dc3e0ff6d12a9b
BLAKE2b-256 9064e9911dc7f4cf78ce514a3b1afbdad1ebba479de198ba2bfe90a4e4d2b60c

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 73db5b85b0fe0a3546338e939bb353a1e4dbcc7c6966b776bf5f535b65761e67
MD5 689fb2e9c1fdab295ec06a8234b30dac
BLAKE2b-256 d01dc5954f147760c55abeee16271818023fa31278fb604c3912adf49ec154c1

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a43a6689cb537533a98dff4a4015e85091568ecc117a9b34525c97c8463852a0
MD5 fcbb4caee554d20fdf21c5adec897037
BLAKE2b-256 e362fdcb392f52d87f22ed4b58262e1bb081ca406eddc18cb227af207144195d

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 cc837e29c1c9d1f81cfb48983c8f92a1df6ef0519ba3bf67926b1e733c242381
MD5 350888b99d16efffc19e727c9321ef1f
BLAKE2b-256 b117f3483ce1a47fc697c1eb6dd3b4038ef7a8007e0f6da2bf7f394f46a036d3

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 8d6629d62bd96aedc9bbaf0aad199de3c32109ad38432501cbb4f8215fdff00b
MD5 b282c8b07f35ec02bb9bcf8c293d4bbb
BLAKE2b-256 b7a67d24e2fe7573a0052227309035775fa68b6ccb1f77951547b9d0affdb1b2

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 79ff9f39240299d8b8014cf159482ab52df7d54d339d950b8f91c39e6cd00ead
MD5 ec89003db3e45022edbb3a41bbec6cc1
BLAKE2b-256 746f7b37654c071948ea43914a860dfb17eafda3dc67a190d964e5b5678db47c

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4506db223d47b3c4996bd69858c076c831904f235256e169942b4536229dc975
MD5 88ed362ffc6f0a5550d9cf160021a70d
BLAKE2b-256 8d0da76b7067dc231dd3712c5bbfe6f03bbab7685c5bf6f4a5feaf771e78be18

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4560b5c43ced4d68ef160048ea1182f552310864b9ab095d60f4dab1dc414132
MD5 6dff408b5191003a4e6ed4db10ee7066
BLAKE2b-256 5652b8bab81f13ffb18464e165ddf5002d1d37f9fab3764d32fd0909ea559857

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 a284e734736684537026e3713cd20e32311a74bbfbdd9e3b65d1049a2cab7f39
MD5 9469b6944a446536d69af60714da68cf
BLAKE2b-256 e72deee5d0ce4afb1493e72b3e8e18276b7f169dbd1e1888e34ed4f83eac29a1

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 925c7da2182a73498a19a3991f4912f4b847bb95aefdc85dab2922b47476bc5c
MD5 c11a07cad39a93abd85f17adb8f683fd
BLAKE2b-256 e616bd2e4a52dd9444ea0aa295f3848ae832c94bc7a99665dee7205647173859

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ad86539494ba41365f53963b5b34c789749da5497e62e971d1f651f05f49b896
MD5 01585dba9dc5266295fd0ebdc234aff2
BLAKE2b-256 ab57df8c4cfd6cb8e0f679d710abb8c730d9e8557669d818ddb26bb11d3cc316

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0aa95c3d97b65992b1a118b892abf31f52169bc66a9a4b3ffd35a5e4aa306ead
MD5 450c9102d5165e66369fc09097a01d70
BLAKE2b-256 7378863389830cf5c6a3d743a98e860d503702c3993f56b83b1a67ff1cbc3439

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a221396341cb91a238a09c187e8af171bf5f24a870a1dc8c00c7e3117f9d14c3
MD5 43defd79d7eed55443dacc1e07ee1cf9
BLAKE2b-256 d48bc31bdfe40a2509497458ca00e8127b275a17cf6a7b971626404567c45a88

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4ca1df8c1015dcf4a9ca9790fbec6e88b973d6025631f03023e9061cdce242fa
MD5 6cd416bf77a544eb19f95ca489eef610
BLAKE2b-256 2467c4de394479c106b05b84934d453eea838c5faa67320de18c02e044336f9c

See more details on using hashes here.

File details

Details for the file PyWavelets-0.5.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-0.5.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b5f54e7bd8438afef007eb25424c5d841085eef6971660e2af7da4f69369b221
MD5 bc3a5757c8b28fd6b0bc664c3215b79b
BLAKE2b-256 9d857e34b5bfb4b7014e79616c46e00960835ab26c8b810143afc1d203484152

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page