Skip to main content

WeTextProcessing, including TN & ITN

Project description

Text Normalization & Inverse Text Normalization

0. Brief Introduction

- **Must Read Doc** (In Chinese): https://mp.weixin.qq.com/s/q_11lck78qcjylHCi6wVsQ

WeTextProcessing: Production First & Production Ready Text Processing Toolkit

0.1 Text Normalization

Cover

0.2 Inverse Text Normalization

Cover

1. How To Use

1.1 Quick Start:

# install
pip install WeTextProcessing

Command-usage:

wetn --text "2.5平方电线"
weitn --text "二点五平方电线"

Python usage:

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer()
>>> normalizer.normalize("2.5平方电线")
# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer()
>>> invnormalizer.normalize("二点五平方电线")

1.2 Advanced Usage:

DIY your own rules && Deploy WeTextProcessing with cpp runtime !!

For users who want modifications and adapt tn/itn rules to fix badcase, please try:

git clone https://github.com/wenet-e2e/WeTextProcessing.git
cd WeTextProcessing
# `overwrite_cache` will rebuild all rules according to
#   your modifications on tn/chinese/rules/xx.py (itn/chinese/rules/xx.py).
#   After rebuild, you can find new far files at `$PWD/tn` and `$PWD/itn`.
python -m tn --text "2.5平方电线" --overwrite_cache
python -m itn --text "二点五平方电线" --overwrite_cache

Once you successfully rebuild your rules, you can deploy them either with your installed pypi packages:

# tn usage
>>> from tn.chinese.normalizer import Normalizer
>>> normalizer = Normalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn")
>>> normalizer.normalize("2.5平方电线")
# itn usage
>>> from itn.chinese.inverse_normalizer import InverseNormalizer
>>> invnormalizer = InverseNormalizer(cache_dir="PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn")
>>> invnormalizer.normalize("二点五平方电线")

Or with cpp runtime:

cmake -B build -S runtime -DCMAKE_BUILD_TYPE=Release
cmake --build build
# tn usage
cache_dir=PATH_TO_GIT_CLONED_WETEXTPROCESSING/tn
./build/processor_main --tagger $cache_dir/zh_tn_tagger.fst --verbalizer $cache_dir/zh_tn_verbalizer.fst --text "2.5平方电线"
# itn usage
cache_dir=PATH_TO_GIT_CLONED_WETEXTPROCESSING/itn
./build/processor_main --tagger $cache_dir/zh_itn_tagger.fst --verbalizer $cache_dir/zh_itn_verbalizer.fst --text "二点五平方电线"

2. TN Pipeline

Please refer to TN.README

3. ITN Pipeline

Please refer to ITN.README

Discussion & Communication

For Chinese users, you can aslo scan the QR code on the left to follow our offical account of WeNet. We created a WeChat group for better discussion and quicker response. Please scan the personal QR code on the right, and the guy is responsible for inviting you to the chat group.

Or you can directly discuss on Github Issues.

Acknowledge

  1. Thank the authors of foundational libraries like OpenFst & Pynini.
  2. Thank NeMo team & NeMo open-source community.
  3. Thank Zhenxiang Ma, Jiayu Du, and SpeechColab organization.
  4. Referred Pynini for reading the FAR, and printing the shortest path of a lattice in the C++ runtime.
  5. Referred TN of NeMo for the data to build the tagger graph.
  6. Referred ITN of chinese_text_normalization for the data to build the tagger graph.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

WeTextProcessing-0.1.4.tar.gz (563.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

WeTextProcessing-0.1.4-py3-none-any.whl (605.5 kB view details)

Uploaded Python 3

File details

Details for the file WeTextProcessing-0.1.4.tar.gz.

File metadata

  • Download URL: WeTextProcessing-0.1.4.tar.gz
  • Upload date:
  • Size: 563.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for WeTextProcessing-0.1.4.tar.gz
Algorithm Hash digest
SHA256 d717a210860dcf09f0f39b53861b6f4f3ba0f41787c8f3a5f92c9f4c11826a9a
MD5 ed9895603abefe2a22d237e021adf727
BLAKE2b-256 b921874bdb4c44239a14502c2a16986cdbc635c1ad00839aff7127663ff509e8

See more details on using hashes here.

File details

Details for the file WeTextProcessing-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for WeTextProcessing-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d8aacf6217ecaf78c1257abc70dee473f81076a8bef2a54a91fa82e59804a79b
MD5 cbc824affbb49b93e996ef1cfa8c8578
BLAKE2b-256 e9718c57d09e4d7a28c0cccc7e83c01869392ad588d0acbb934cbca5176991bc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page