Skip to main content

The CDK Construct Library for AWS Lambda in Python

Project description

Amazon Lambda Python Library

---

cdk-constructs: Experimental

The APIs of higher level constructs in this module are experimental and under active development. They are subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model and breaking changes will be announced in the release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


This library provides constructs for Python Lambda functions.

To use this module, you will need to have Docker installed.

Python Function

Define a PythonFunction:

lambda_.PythonFunction(self, "MyFunction",
    entry="/path/to/my/function",  # required
    runtime=Runtime.PYTHON_3_8,  # required
    index="my_index.py",  # optional, defaults to 'index.py'
    handler="my_exported_func"
)

All other properties of lambda.Function are supported, see also the AWS Lambda construct library.

Python Layer

You may create a python-based lambda layer with PythonLayerVersion. If PythonLayerVersion detects a requirements.txt or Pipfile or poetry.lock with the associated pyproject.toml at the entry path, then PythonLayerVersion will include the dependencies inline with your code in the layer.

Define a PythonLayerVersion:

lambda_.PythonLayerVersion(self, "MyLayer",
    entry="/path/to/my/layer"
)

A layer can also be used as a part of a PythonFunction:

lambda_.PythonFunction(self, "MyFunction",
    entry="/path/to/my/function",
    runtime=Runtime.PYTHON_3_8,
    layers=[
        lambda_.PythonLayerVersion(self, "MyLayer",
            entry="/path/to/my/layer"
        )
    ]
)

Packaging

If requirements.txt, Pipfile or poetry.lock exists at the entry path, the construct will handle installing all required modules in a Lambda compatible Docker container according to the runtime and with the Docker platform based on the target architecture of the Lambda function.

Python bundles are only recreated and published when a file in a source directory has changed. Therefore (and as a general best-practice), it is highly recommended to commit a lockfile with a list of all transitive dependencies and their exact versions. This will ensure that when any dependency version is updated, the bundle asset is recreated and uploaded.

To that end, we recommend using [pipenv] or [poetry] which have lockfile support.

Packaging is executed using the Packaging class, which:

  1. Infers the packaging type based on the files present.
  2. If it sees a Pipfile or a poetry.lock file, it exports it to a compatible requirements.txt file with credentials (if they're available in the source files or in the bundling container).
  3. Installs dependencies using pip.
  4. Copies the dependencies into an asset that is bundled for the Lambda package.

Lambda with a requirements.txt

.
├── lambda_function.py # exports a function named 'handler'
├── requirements.txt # has to be present at the entry path

Lambda with a Pipfile

.
├── lambda_function.py # exports a function named 'handler'
├── Pipfile # has to be present at the entry path
├── Pipfile.lock # your lock file

Lambda with a poetry.lock

.
├── lambda_function.py # exports a function named 'handler'
├── pyproject.toml # your poetry project definition
├── poetry.lock # your poetry lock file has to be present at the entry path

Custom Bundling

Custom bundling can be performed by passing in additional build arguments that point to index URLs to private repos, or by using an entirely custom Docker images for bundling dependencies. The build args currently supported are:

  • PIP_INDEX_URL
  • PIP_EXTRA_INDEX_URL
  • HTTPS_PROXY

Additional build args for bundling that refer to PyPI indexes can be specified as:

entry = "/path/to/function"
image = DockerImage.from_build(entry)

lambda_.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=lambda.BundlingOptions(
        build_args={"PIP_INDEX_URL": "https://your.index.url/simple/", "PIP_EXTRA_INDEX_URL": "https://your.extra-index.url/simple/"}
    )
)

If using a custom Docker image for bundling, the dependencies are installed with pip, pipenv or poetry by using the Packaging class. A different bundling Docker image that is in the same directory as the function can be specified as:

entry = "/path/to/function"
image = DockerImage.from_build(entry)

lambda_.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=lambda.BundlingOptions(image=image)
)

Custom Bundling with Code Artifact

To use a Code Artifact PyPI repo, the PIP_INDEX_URL for bundling the function can be customized (requires AWS CLI in the build environment):

from child_process import exec_sync


entry = "/path/to/function"
image = DockerImage.from_build(entry)

domain = "my-domain"
domain_owner = "111122223333"
repo_name = "my_repo"
region = "us-east-1"
code_artifact_auth_token = exec_sync(f"aws codeartifact get-authorization-token --domain {domain} --domain-owner {domainOwner} --query authorizationToken --output text").to_string().trim()

index_url = f"https://aws:{codeArtifactAuthToken}@{domain}-{domainOwner}.d.codeartifact.{region}.amazonaws.com/pypi/{repoName}/simple/"

lambda_.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=lambda.BundlingOptions(
        build_args={"PIP_INDEX_URL": index_url}
    )
)

This type of an example should work for pip and poetry based dependencies, but will not work for pipenv.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aws-cdk.aws-lambda-python-1.138.0.tar.gz (52.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

aws_cdk.aws_lambda_python-1.138.0-py3-none-any.whl (51.2 kB view details)

Uploaded Python 3

File details

Details for the file aws-cdk.aws-lambda-python-1.138.0.tar.gz.

File metadata

  • Download URL: aws-cdk.aws-lambda-python-1.138.0.tar.gz
  • Upload date:
  • Size: 52.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.5

File hashes

Hashes for aws-cdk.aws-lambda-python-1.138.0.tar.gz
Algorithm Hash digest
SHA256 f4d84d7b7e57e0789c2bc695ba29f83db335ae8758f81321fef111f68068858c
MD5 e85864315c8822ec24f19267ffc2362d
BLAKE2b-256 3974101723334953923db1011d030ddb929e371b1e687ecf31cdb837e2b07818

See more details on using hashes here.

File details

Details for the file aws_cdk.aws_lambda_python-1.138.0-py3-none-any.whl.

File metadata

  • Download URL: aws_cdk.aws_lambda_python-1.138.0-py3-none-any.whl
  • Upload date:
  • Size: 51.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.5

File hashes

Hashes for aws_cdk.aws_lambda_python-1.138.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bd7b26a018f5222a4a6a4206f1e5b17231f2face7f7d6f07d239be8f2e2670b2
MD5 c9d633e2d05f7f2b672b3ee94b14a5d4
BLAKE2b-256 480cae75fec4cf748cfffd1b9087da19ebca2a06dbb3e79d6ed7a5aeb012e8c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page