Skip to main content

Catalyst. PyTorch framework for DL research and development.

Project description

Catalyst logo

Accelerated DL R&D

Build Status CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentation and code/ideas reusing. Being able to research/develop something new, rather than write another regular train loop.
Break the cycle - use the Catalyst!

Project manifest. Part of PyTorch Ecosystem. Part of Catalyst Ecosystem:

  • Alchemy - Experiments logging & visualization
  • Catalyst - Accelerated Deep Learning Research and Development
  • Reaction - Convenient Deep Learning models serving

Catalyst at AI Landscape.


Getting started

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst.dl import SupervisedRunner

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

runner = SupervisedRunner()
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=8,
    verbose=True,
)
# model inference
loader_logits = runner.predict_loader(model=model, loader=loader, verbose=True)

Minimal Examples

ML - Linear Regression is my profession

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst.dl import SupervisedRunner

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=8,
    verbose=True,
)

CV - MNIST one more time

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from catalyst import dl

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):
    def _handle_batch(self, batch):
        x, y = batch
        y_hat = self.model(x.view(x.size(0), -1))
        loss = F.cross_entropy(y_hat, y)
        self.state.batch_metrics["loss"] = loss

        if self.state.is_train_loader:
            loss.backward()
            self.state.optimizer.step()
            self.state.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer, 
    loaders=loaders, 
    verbose=True,
)

CV - MNIST classification with AutoEncoder

import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from catalyst import dl


class ClassifyAE(nn.Module):
    def __init__(self, in_features, hid_features, out_features):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(in_features, hid_features), nn.Tanh())
        self.decoder = nn.Linear(hid_features, in_features)
        self.clf = nn.Linear(hid_features, out_features)

    def forward(self, x):
        z = self.encoder(x)
        y_hat = self.clf(z)
        x_ = self.decoder(z)
        return y_hat, x_


model = ClassifyAE(28 * 28, 128, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):
    def _handle_batch(self, batch):
        x, y = batch
        x = x.view(x.size(0), -1)
        y_hat, x_ = self.model(x)
        loss_clf = F.cross_entropy(y_hat, y)
        loss_ae = F.mse_loss(x_, x)
        loss = loss_clf + loss_ae

        self.state.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_ae": loss_ae,
            "loss": loss
        }

        if self.state.is_train_loader:
            loss.backward()
            self.state.optimizer.step()
            self.state.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer, 
    loaders=loaders, 
    verbose=True,
)

GAN - MNIST, flatten version

import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from catalyst import dl


generator = nn.Sequential(nn.Linear(128, 28 * 28), nn.Tanh())
discriminator = nn.Sequential(nn.Linear(28 * 28, 1), nn.Sigmoid())
model = nn.ModuleDict({"generator": generator, "discriminator": discriminator})

generator_optimizer = torch.optim.Adam(
    generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
discriminator_optimizer = torch.optim.Adam(
    discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer = {
    "generator": generator_optimizer,
    "discriminator": discriminator_optimizer,
}

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True,transform=transforms.ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        state = self.state

        images, _ = batch
        images = images.view(images.size(0), -1)
        bs = images.shape[0]
        z = torch.randn(bs, 128).to(self.device)
        generated_images = self.model["generator"](z)

        # generator step
        ## predictions & labels
        generated_labels = torch.ones(bs, 1).to(self.device)
        generated_pred = self.model["discriminator"](generated_images)

        ## loss
        loss_generator = F.binary_cross_entropy(generated_pred, generated_labels)
        state.batch_metrics["loss_generator"] = loss_generator

        # discriminator step
        ## real
        images_labels = torch.ones(bs, 1).to(self.device)
        images_pred = self.model["discriminator"](images)
        real_loss = F.binary_cross_entropy(images_pred, images_labels)

        ## fake
        generated_labels_ = torch.zeros(bs, 1).to(self.device)
        generated_pred_ = self.model["discriminator"](generated_images.detach())
        fake_loss = F.binary_cross_entropy(generated_pred_, generated_labels_)

        ## loss
        loss_discriminator = (real_loss + fake_loss) / 2.0
        state.batch_metrics["loss_discriminator"] = loss_discriminator

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer,
    loaders=loaders,
    callbacks=[
        dl.OptimizerCallback(
            optimizer_key="generator", 
            loss_key="loss_generator"
        ),
        dl.OptimizerCallback(
            optimizer_key="discriminator", 
            loss_key="loss_discriminator"
        ),
    ],
    main_metric="loss_generator",
    num_epochs=5,
    logdir="./logs/gan",
    verbose=True,
)

ML - Linear Regression is my profession (distributed version)

#!/usr/bin/env python
import torch
from torch.utils.data import TensorDataset
from catalyst.dl import SupervisedRunner, utils


def datasets_fn(num_features: int):
    X = torch.rand(int(1e4), num_features)
    y = torch.rand(X.shape[0])
    dataset = TensorDataset(X, y)
    return {"train": dataset, "valid": dataset}


def train():
    num_features = int(1e1)
    # model, criterion, optimizer, scheduler
    model = torch.nn.Linear(num_features, 1)
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters())
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

    runner = SupervisedRunner()
    runner.train(
        model=model,
        datasets={
            "batch_size": 32,
            "num_workers": 1,
            "get_datasets_fn": datasets_fn,
            "num_features": num_features,
        },
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        logdir="./logs/example_distributed_ml",
        num_epochs=8,
        verbose=True,
        distributed=False,
    )


utils.distributed_cmd_run(train)

CV - MNIST classification with AutoEncoder (distributed version)

#!/usr/bin/env python
import os
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from catalyst import dl, utils


class ClassifyAE(nn.Module):
    def __init__(self, in_features, hid_features, out_features):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(in_features, hid_features), nn.Tanh())
        self.decoder = nn.Linear(hid_features, in_features)
        self.clf = nn.Linear(hid_features, out_features)

    def forward(self, x):
        z = self.encoder(x)
        y_hat = self.clf(z)
        x_ = self.decoder(z)
        return y_hat, x_

class CustomRunner(dl.Runner):
    def _handle_batch(self, batch):
        x, y = batch
        x = x.view(x.size(0), -1)
        y_hat, x_ = self.model(x)
        loss_clf = F.cross_entropy(y_hat, y)
        loss_ae = F.mse_loss(x_, x)
        loss = loss_clf + loss_ae

        self.state.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_ae": loss_ae,
            "loss": loss
        }

        if self.state.is_train_loader:
            loss.backward()
            self.state.optimizer.step()
            self.state.optimizer.zero_grad()

def datasets_fn():
    dataset = MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
    return {"train": dataset, "valid": dataset}


def train():
    model = ClassifyAE(28 * 28, 128, 10)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

    runner = CustomRunner()
    runner.train(
        model=model,
        optimizer=optimizer,
        datasets={
            "batch_size": 32,
            "num_workers": 1,
            "get_datasets_fn": datasets_fn,
        },
        logdir="./logs/distributed_ae",
        num_epochs=8,
        verbose=True,
    )

utils.distributed_cmd_run(train)

Demo with minimal examples for ML, CV, NLP, GANs and RecSys

Distributed training best practices

For Catalyst.RL introduction, please follow Catalyst.RL repo.

Table of Contents

Overview

Catalyst helps you write compact but full-featured Deep Learning pipelines in a few lines of code. You get a training loop with metrics, early-stopping, model checkpointing and other features without the boilerplate.

Installation

Common installation:

pip install -U catalyst
Specific versions with additional requirements

pip install catalyst[ml]         # installs DL+ML based catalyst
pip install catalyst[cv]         # installs DL+CV based catalyst
pip install catalyst[nlp]        # installs DL+NLP based catalyst
pip install catalyst[ecosystem]  # installs Catalyst.Ecosystem
pip install catalyst[contrib]    # installs DL+contrib based catalyst
pip install catalyst[all]        # installs everything
# and master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade

Catalyst is compatible with: Python 3.6+. PyTorch 1.0.0+.

Features

  • Universal train/inference loop.
  • Configuration files for model/data hyperparameters.
  • Reproducibility – all source code and environment variables will be saved.
  • Callbacks – reusable train/inference pipeline parts with easy customization.
  • Training stages support.
  • Deep Learning best practices - SWA, AdamW, Ranger optimizer, OneCycle, and more.
  • Developments best practices - fp16 support, distributed training, slurm.

Structure

  • contrib - additional modules contributed by Catalyst users.
  • core - framework core with main abstractions - Experiment, Runner, Callback and State.
  • data - useful tools and scripts for data processing.
  • DL – runner for training and inference, all of the classic ML and CV/NLP/RecSys metrics and a variety of callbacks for training, validation and inference of neural networks.
  • utils - typical utils for Deep Learning research.

Tests

All the Catalyst code is tested rigorously with every new PR.

In fact, we train a number of different models for various of tasks - image classification, image segmentation, text classification, GAN training. During the tests, we compare their convergence metrics in order to verify the correctness of the training procedure and its reproducibility.

Overall, Catalyst guarantees fully tested, correct and reproducible best practices for the automated parts.

Catalyst

Tutorials

API documentation and an overview of the library can be found here Docs.
In the examples folder of the repository, you can find advanced tutorials and Catalyst best practices.

Projects

Tools and pipelines

Talks and videos

Community

Contribution guide

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

User feedback

We have created catalyst.team.core@gmail.com for "user feedback".

  • If you like the project and want to say thanks, this the right place.
  • If you would like to start a collaboration between your team and Catalyst team to do better Deep Learning R&D - you are always welcome.
  • If you just don't like Github issues and this ways suits you better - feel free to email us.
  • Finally, if you do not like something, please, share it with us and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Trusted by

Supported by

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Accelerated DL R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

catalyst-20.4.1.tar.gz (204.4 kB view hashes)

Uploaded Source

Built Distribution

catalyst-20.4.1-py2.py3-none-any.whl (326.0 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page