Skip to main content

Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction

Project description

CPT

PyPI version Downloads License

What is it ?

This project is a cython open-source implementation of the Compact Prediction Tree algorithm using multithreading.

CPT is a sequence prediction model. It is a highly explainable model specialized in predicting the next element of a sequence over a finite alphabet.

This implementation is based on the following research papers:

Installation

You can simply use pip install cpt.

Simple example

You can test the model with the following code:

from cpt.cpt import Cpt
model = Cpt()

model.fit([['hello', 'world'],
           ['hello', 'this', 'is', 'me'],
           ['hello', 'me']
          ])

model.predict([['hello'], ['hello', 'this']])
# Output: ['me', 'is']

For an example with the compatibility with sklearn, you should check the documentation.

Features

Train

The model can be trained with the fit method.

If needed the model can be retrained with the same method. It adds new sequences to the model and do not remove the old ones.

Multithreading

The predictions are launched by default with multithreading with OpenMP.

The predictions can also be launched in a single thread with the option multithread=False in the predict method.

You can control the number of threads by setting the following environment variable OMP_NUM_THREADS.

Pickling

You can pickle the model to save it, and load it later via pickle library.

from cpt.cpt import Cpt
import pickle


model = Cpt()
model.fit([['hello', 'world']])

dumped = pickle.dumps(model)

unpickled_model = pickle.loads(dumped)

print(model == unpickled_model)

Explainability

The CPT class has several methods to explain the predictions.

You can see which elements are considered as noise (with a low presence in sequences) with model.compute_noisy_items(noise_ratio).

You can retrieve trained sequences with model.retrieve_sequence(id).

You can find similar sequences with find_similar_sequences(sequence).

You can not yet retrieve automatically all similar sequences with the noise reduction technique.

Tuning

CPT has 3 meta parameters that need to be tuned. You can check how to tune them in the documentation. To tune you can use the model_selection module from sklearn, you can find an example here on how to.

Benchmark

The benchmark has been made on the FIFA dataset, the data can be found on the SPMF website.

Using multithreading, CPT was able to perform around 5000 predictions per second.

Without multithreading, CPT predicted around 1650 sequences per second.

Details on the benchmark can be found here.

Further reading

A study has been made on how to reduce dataset size, and so training / testing time using PageRank on the dataset.

The study has been published in IJIKM review here. An overall performance improvement of 10-40% has been observed with this technique on the prediction time without any accuracy loss.

One of the co-author of CPT has also published an algorithm subseq for sequence prediction. An implementation can be found here

Support

If you enjoy the project and wish to support me, a buymeacoffee link is available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

cpt-1.3.6-cp314-cp314t-win_arm64.whl (104.4 kB view details)

Uploaded CPython 3.14tWindows ARM64

cpt-1.3.6-cp314-cp314t-win_amd64.whl (123.5 kB view details)

Uploaded CPython 3.14tWindows x86-64

cpt-1.3.6-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp314-cp314t-macosx_14_0_arm64.whl (454.0 kB view details)

Uploaded CPython 3.14tmacOS 14.0+ ARM64

cpt-1.3.6-cp314-cp314t-macosx_13_0_x86_64.whl (484.7 kB view details)

Uploaded CPython 3.14tmacOS 13.0+ x86-64

cpt-1.3.6-cp314-cp314-win_arm64.whl (98.5 kB view details)

Uploaded CPython 3.14Windows ARM64

cpt-1.3.6-cp314-cp314-win_amd64.whl (108.5 kB view details)

Uploaded CPython 3.14Windows x86-64

cpt-1.3.6-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp314-cp314-macosx_14_0_arm64.whl (449.1 kB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

cpt-1.3.6-cp314-cp314-macosx_13_0_x86_64.whl (480.0 kB view details)

Uploaded CPython 3.14macOS 13.0+ x86-64

cpt-1.3.6-cp313-cp313t-win_arm64.whl (101.3 kB view details)

Uploaded CPython 3.13tWindows ARM64

cpt-1.3.6-cp313-cp313t-win_amd64.whl (118.7 kB view details)

Uploaded CPython 3.13tWindows x86-64

cpt-1.3.6-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp313-cp313t-macosx_14_0_arm64.whl (454.0 kB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

cpt-1.3.6-cp313-cp313t-macosx_13_0_x86_64.whl (484.8 kB view details)

Uploaded CPython 3.13tmacOS 13.0+ x86-64

cpt-1.3.6-cp313-cp313-win_arm64.whl (94.8 kB view details)

Uploaded CPython 3.13Windows ARM64

cpt-1.3.6-cp313-cp313-win_amd64.whl (106.2 kB view details)

Uploaded CPython 3.13Windows x86-64

cpt-1.3.6-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp313-cp313-macosx_14_0_arm64.whl (450.2 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

cpt-1.3.6-cp313-cp313-macosx_13_0_x86_64.whl (480.4 kB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

cpt-1.3.6-cp312-cp312-win_arm64.whl (95.4 kB view details)

Uploaded CPython 3.12Windows ARM64

cpt-1.3.6-cp312-cp312-win_amd64.whl (106.9 kB view details)

Uploaded CPython 3.12Windows x86-64

cpt-1.3.6-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp312-cp312-macosx_14_0_arm64.whl (450.8 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

cpt-1.3.6-cp312-cp312-macosx_13_0_x86_64.whl (481.1 kB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

cpt-1.3.6-cp311-cp311-win_arm64.whl (95.6 kB view details)

Uploaded CPython 3.11Windows ARM64

cpt-1.3.6-cp311-cp311-win_amd64.whl (106.4 kB view details)

Uploaded CPython 3.11Windows x86-64

cpt-1.3.6-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp311-cp311-macosx_14_0_arm64.whl (439.1 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

cpt-1.3.6-cp311-cp311-macosx_13_0_x86_64.whl (469.3 kB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

cpt-1.3.6-cp310-cp310-win_arm64.whl (95.8 kB view details)

Uploaded CPython 3.10Windows ARM64

cpt-1.3.6-cp310-cp310-win_amd64.whl (106.2 kB view details)

Uploaded CPython 3.10Windows x86-64

cpt-1.3.6-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cpt-1.3.6-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cpt-1.3.6-cp310-cp310-macosx_14_0_arm64.whl (439.4 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

cpt-1.3.6-cp310-cp310-macosx_13_0_x86_64.whl (470.5 kB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

File details

Details for the file cpt-1.3.6-cp314-cp314t-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp314-cp314t-win_arm64.whl
  • Upload date:
  • Size: 104.4 kB
  • Tags: CPython 3.14t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-win_arm64.whl
Algorithm Hash digest
SHA256 55be7622bde631fdad5f3f747de5d0f97635165ea6fa4783ee571eeb232653bd
MD5 59ee14e0c6aed43d1f5b8b89e0353e47
BLAKE2b-256 76bb852376ba3327a4c497440fb89f16e65740f1da44fdf34398539a780c8c77

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 123.5 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 a5b1d60ded5a863775b80109d7ac4a9020ab00974ae6da3734d25654f1624370
MD5 fe36c57cdfff3a0f85f3b2f00f5033b4
BLAKE2b-256 e5339a7770f214a9643e954612c22ce41714c08626c8077d1b6598cb66ff04c5

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 76f674301bd5c74563c59c4df283b83095e897bc62cfaa379fd63b92f5041fd4
MD5 d659455f7ef8f4d572acb80b540e2596
BLAKE2b-256 fdcd22ff89147203ffb62c6c5d0a6a9fd78ad8e53125d6f5d549ee34c88ef8b3

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 93c8dfb02938a7efad18ea0a78c11fc1e76cb9a46f1f28d29b141c689ee1e4a7
MD5 83146373029b156d2507dd5d63a3b649
BLAKE2b-256 ff61583f6efaa640e39eff70d101adfc94b0d3f0494f61fea7a7ecda82547cf5

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9ed98e39004accfc39a650a28dcf3ea0556b58101ca821f6a2b3b952048d5b80
MD5 929ce964e441a287f45619359d557128
BLAKE2b-256 bd885b26cb5c3b10a726c4350c0b2965d8968f8424ee0e7bb95f86f038c5b63c

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314t-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314t-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a421bed036e8a12852caee66f76703460043dd256262ed65aaefd345ded19158
MD5 e4b6d8cd52ba7285b7369428b4044329
BLAKE2b-256 390333f55314c1bf5741c12d420215151ce27c6766e178cd00d81f3b28150929

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp314-cp314-win_arm64.whl
  • Upload date:
  • Size: 98.5 kB
  • Tags: CPython 3.14, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp314-cp314-win_arm64.whl
Algorithm Hash digest
SHA256 6786842c5e23823f5acd4f3fb783b7d6f20e4bb86e14f1830678353b3044b47c
MD5 3e84be8cfa55b00409e5d082ec8a56ff
BLAKE2b-256 4992708edb94b108b29cfa28de3832868c76aaf83cb6d1ebc140a603e016fd18

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 108.5 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 0bdabfebda9491d328a785d618e5ce43e82d8427854cc33313826e3cca5af9fd
MD5 26172733673e716342a4f07747842729
BLAKE2b-256 38649c396b350821321b84531e653e6cb29470be80107198f3d3dda0014b2417

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a0c4d9b4e9c9bf0613ee4c0c0e0988dcf2bd12d1a40cf9f59ea8cccb87d31d9f
MD5 a86d05a67f033b832acd8cf88b777891
BLAKE2b-256 634fe1b906d9f3c361ad4b1a68a5c190064eb7ebb26aad04da82d120a0752753

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f66d41176590bba43d6bb43e65c076b988a659baf98ba99b5369426e424d8422
MD5 87fc316a563296d200eae5fb0cbf7651
BLAKE2b-256 80023625e594878f77ec5d932b69a235fb32e581ef6458e3467d8c4a75f223cb

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp314-cp314-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 449.1 kB
  • Tags: CPython 3.14, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5c54f6b2b8e40d59417da615f3ea7c3d6b1c1b2b498724881767d0f0480c7b54
MD5 cfd7fb0a1f0fb013f95f6446ccc68055
BLAKE2b-256 39af00e640ef52f2d803ac898ffc5c234ecfb361f82966fbfb5ee1d6f9480441

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp314-cp314-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp314-cp314-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 df384be08b2c488941daddadf4846d54312680654df04431e2656576f06e4600
MD5 f782009a5096ea47785b048fbf384e56
BLAKE2b-256 0f37eb7b8efa0e4a3529cfc5a0266583b0a9e193346e67f4f8778a8c9b484e6c

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp313-cp313t-win_arm64.whl
  • Upload date:
  • Size: 101.3 kB
  • Tags: CPython 3.13t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-win_arm64.whl
Algorithm Hash digest
SHA256 d8cfd92cbefea36a89caded0be3d3b8a4b91af94dd325d5e7a1529e3c06c5b4a
MD5 33286eabd2aeb4e3ef60cfe614714d13
BLAKE2b-256 3a755b15e1d27854351082f7fe927f816a22c00cbadbfbe932f22c95d288b1de

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 118.7 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 a1e5efb0e2f26ee37b6392016b72bc32054e92a7e4687ba634f3ec76dab5f012
MD5 ac9affc619b98879845417415dcae8d0
BLAKE2b-256 1d72dae22d0d2dd0be1c18cf3062015b314d83d7f0922cf8e209a65830861b7d

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 46837a2dc39388a4a1779b77245cb014728fcfca3caf479c621504a4d70fe446
MD5 b71467ddb37de9572d3bdc71f957c29e
BLAKE2b-256 8da0cf16a95922ee19a5d48c4f99b1d1a4e7e7bf08ee95e34173015749369e74

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 67c473e61b9a28a36db8be6bf9ced043853e846f2dd8ab0a2d1ec44aa89bf5bd
MD5 b6bfd1250d84d52c4ef2310184cf9839
BLAKE2b-256 85f17c164bbd5ad8e3806190e0e862bbaa4bdfbb9fb0ac2fc859141c6086e272

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7aa6a7005f72a7e4c4693a4156aa80fe0907333cdc1d2ba0349074b0a36a71dd
MD5 5dda8cab85dde74e023a9cbe42bb7cd8
BLAKE2b-256 9d0a5a9c27a51bfd8d2e2927f061f68bb0a0cf0f28c8b11c57ae2c6a8b357920

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313t-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313t-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 550469432bd6892ebff8e0218cfce1ca3c24d4701f4007482934938effe7426e
MD5 db172c44243603a08b5795e1468e6201
BLAKE2b-256 c2d43b3187d42bf3316fb48a92a856d153dabc965f33e3e4fa348ab7074275d7

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 94.8 kB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 20dc7e7f03d57499390789a4f09e8ff2149f68fab480f1df8e38ab236006d7aa
MD5 1b85795680681f8ccc8cfa211b0b38de
BLAKE2b-256 da85d0c78af709612d578c496e27696b85c4b6b103a9cd9222328454da2beb85

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 106.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4d8a0521fae1c2ba29cee2dee712160b23c659e0366cf026b348c491af3d7292
MD5 2e54c47cd66d1ab8bd3620bc63b8c46b
BLAKE2b-256 4d3c08f17eed7ab89318923a530e32d5812f08b5915c763a9ab2d060150fa66a

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 02db7e7f1a78239921e8e9482c2fed95cdd82dfc7471f1286b42da894a365fa0
MD5 e1cb5b26e2608a109e4a8b630dfde3a1
BLAKE2b-256 3803fb365320ce15bace9201ddb0c12f7359d6fedf0c85cf30b168e11cdc2dc8

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6001c0cf3b2a93f20b41f43bbaaf78bcb407acf492f596319cf08e17d71b8fe0
MD5 59f5e75bd962719d1b036f64e683078d
BLAKE2b-256 27218a7e3ea77b2c52ee4638b287c205407ba8d8a113b36d4e7ecac42f716e5e

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp313-cp313-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 450.2 kB
  • Tags: CPython 3.13, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d52507a79be9ccf1932cb565b8822212accf8b619817ebface5d71ef552ed098
MD5 c117457d8df9702ab39a053d53ba4280
BLAKE2b-256 fcc27f76f5be2cea9a2c9d00060134919aeeca92fe793950e7e6e4d106a823ff

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 997f9dda406083098db4e9e3e62a236857311ebef82dae3472e48083a51cbb0a
MD5 1d0cd755d715959102e3590ffc17cb01
BLAKE2b-256 d3c9e3d8d1a116defcc76bd585889f20c48e1f90382a78a4d19dfca0765b23ba

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 95.4 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 9dc917fed272fb0efd617b6f6b548068b044025d8df77ec53ee1db12f023c2b2
MD5 827bfcf7ca7a0d4a1f73d1aa6f129e80
BLAKE2b-256 b90528bf6af36cccef2cc5b3f6966342c30fc3f5ffba490afff0540fccba1c6f

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 106.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 deaa1a3c73440f6c70f1c4dcf08eef05adfe31034f92dd5d970809b5657bcbb9
MD5 739d427e697fa1cae50a97aa2b9a61ab
BLAKE2b-256 8fdc76b040722a0d927e785d4e8f2ea9b2b43a43263164469b153c1276034a0b

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 04b651c855ccca473755e56497af8fcdccf580623a73e6664ae3c5f2055beb10
MD5 727726734f7f5578b94745c2cbbd4f8b
BLAKE2b-256 99d6c8e31d564db3d2f9597e07fd69c9931935789fefa7599992696cc220363c

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d412cec46d5b93f30d83519e6dbb8bfa40190dba2b27eeb8eebb7e62bdb29156
MD5 c027decf77ea6b64dc6f80afce25d93b
BLAKE2b-256 ab8a18bd46e283d0dc6bd35179610d75a240e65dbb15aa381d1879c46a60753f

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp312-cp312-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 450.8 kB
  • Tags: CPython 3.12, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8361c4f6cfe3a7e99f5768efdec6fd4a7f838d68bc19b1d7a250b030818b1ea3
MD5 317384a067d473f8d86bfa7d2912f853
BLAKE2b-256 eb923710c4ac6de3c9d6a9c4b9c7ef472b746d77f896f0c60f087c3533e123f1

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 fdebb35fda8115081c5da9f1d1fcf1b2da69fec7796d950c860e6df08e7c2193
MD5 1c7069898d9d83655cb75e33eb9fa840
BLAKE2b-256 c029adaf5e2edbe77dabde3a2c74d5024550a98624956040dd85a1b5b9338f2c

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 95.6 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 90d3dc0bb9068c78e9993e335c999ad13f181e93ef3c34860d055c3ec4f99533
MD5 410a65ce22dc918116d5f5dc5f06963e
BLAKE2b-256 00cb4fefedf777b77444a30133bb80a7a22ad80fa814a3d8eda3c763e7f18385

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 106.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3f8ac122b6f0b24d9ead6a5921a6701f5402fd9e3f64b6d875b633f7553d896d
MD5 3922f82645f174ae846e1611433bcd85
BLAKE2b-256 6476b2c91e4a08110af501b587071128d869c72673c7392057a4f09f69a3ab07

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1d17b67b09e8c22b9c50a5cdedd68f27bdeb2d4bdf43d3d75023cfb74ac417dd
MD5 30f822db4b1873f6f67251279815d1d6
BLAKE2b-256 4975b819572c8e0e5f19fe3dfabfd5d57a1c233b1bd588146788d68520864c01

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a887b5c6a44ab24d9a0dbe0bcb29da3ba24db8e079dd1b146ca56fbe6490993e
MD5 72eb2ffaa32ed6e59e7c949babc68c2f
BLAKE2b-256 55d72c4a2439db885b00fe052832f059356c5260cb42a9917ba49bee2b0033ea

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp311-cp311-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 439.1 kB
  • Tags: CPython 3.11, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e8a5cf35083e7ed5e28d8c2f2f0885f9585eb23e0b97ad93bf0cab4bb9437b8a
MD5 3ab1df60f8a46d939967a2bac8b36d28
BLAKE2b-256 de38e748353f4aaa88c279a3bbd13d8b1f459d0e0be0d0d9625d3f436cc33676

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 ba4fe6282d8c844e85f8126fc604556bd16075804165a18c4d08e500eebdcd91
MD5 fc9cf358f4de1635eb84f9e210ce50b4
BLAKE2b-256 a04f64e180c2f080d723b8463456f63192b11cbc6fbb21611f23a46dec2da744

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 d8fd884673b6fe647d2888681fee759109af978649baad84cf0ab913754a8f1f
MD5 8fd76359c7e6057f6bfb9dd272414729
BLAKE2b-256 c79ce3f64c0a202ccf9b673ff484f6112a13e5342c8034e67538eb0f7216eaf9

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 106.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f6eda34c2d410b5a997225b10ab5334256ca4bf198300032e350b3940c388c47
MD5 3e844edff942de83aea8287127a48b95
BLAKE2b-256 bfea31cbcf1428374155eb89cd8df41bf599dcd544d0d756956fbb7b6d3d8c59

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b98e89798dab24d5875c2464a4599a522b506c980cbc4cf277022b9c96846f66
MD5 7ceb01a29ddb90cf623c673f7af9f624
BLAKE2b-256 44fe056e77014e721762eed992e884debf8b3cbb1b3a86ef4dfcaf71f4aca660

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6ad1ab9b2c7f8eb96823faa0c2a765875e9112719715893fcc4abe7de8178a18
MD5 2ca4324f3d350ab8a9458200415042a0
BLAKE2b-256 122fb223cc0b19b36e6d0d23c8ee2870d90cba8812480425a3962fcb9cdd4982

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

  • Download URL: cpt-1.3.6-cp310-cp310-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 439.4 kB
  • Tags: CPython 3.10, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for cpt-1.3.6-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5fe2f0f7377827b18472e401b8382f582a7fd580f2e0e2dfbbc489bd4847b9cb
MD5 eb40444b5cdfe6a4bfcd8448a6ebe9b7
BLAKE2b-256 a097bf78ef1301cd4679256bd0a280a1e407254a27b1a58542107547a822fc31

See more details on using hashes here.

File details

Details for the file cpt-1.3.6-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for cpt-1.3.6-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8cd4fa18794aa131b8e1e9606e1168e342e12d239ed37566515dc8a32f3a7313
MD5 ef92527c292dfeb54d2d8034c874882b
BLAKE2b-256 d79521102545271fa05d1cc413ad074dc87f7a9b6285c9b26fed1a6ad3dadd7c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page