Skip to main content

Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering

Project description

Dr.Jit logo

About this project

Dr.Jit is a just-in-time (JIT) compiler for ordinary and differentiable computation. It was originally created as the numerical foundation of Mitsuba 3, a differentiable Monte Carlo renderer. However, Dr.Jit is a general-purpose tool that can also help with various other types of embarrassingly parallel computation.

Dr.Jit helps with three steps:

  • Vectorization and tracing: When Dr.Jit encounters an operation (e.g. an addition a + b) it does not execute it right away: instead, it remembers that an addition will be needed at some later point by recording it into a graph representation (this is called tracing). Eventually, it will just-in-time (JIT) compile the recorded operations into a fused kernel using either LLVM (when targeting the CPU) or CUDA (when targeting the GPU). The values a and b will typically be arrays with many elements, and the system parallelizes their evaluation using multi-core parallelism and vector instruction sets like AVX512 or ARM Neon.

    Dr.Jit works particular well for Monte Carlo methods, which performs the same computation on for millions of random samples. Dr.Jit dynamically generates specialized parallel code for the target platform. As a fallback, Dr.Jit can also be used without JIT-compilation, which turns the project into a header-only vector library without external dependencies.

  • Differentiation: If desired, Dr.Jit can compute derivatives using automatic differentiation (AD), using either forward or reverse-mode accumulation. Differentiation and tracing go hand-in-hand to produce specialized derivative evaluation code.

  • Python: Dr.Jit types are accessible within C++17 and Python. Code can be developed in either language, or even both at once. Combinations of Python and C++ code can be jointly traced and differentiated.

Dr.Jit handles large programs with custom data structures, side effects, and polymorphism. It includes a mathematical support library including transcendental functions and types like vectors, matrices, complex numbers, quaternions, etc.

Difference to machine learning frameworks

Why did we create Dr.Jit, when dynamic derivative compilation is already possible using Python-based ML frameworks like JAX, Tensorflow, and PyTorch along with backends like XLA and TorchScript?

The reason is related to the typical workloads: machine learning involves smallish computation graphs that are, however, made of arithmetically intense operations like convolutions, matrix multiplications, etc. The application motivating Dr.Jit (differentiable rendering) creates giant and messy computation graphs consisting of 100K to millions of “trivial” nodes (elementary arithmetic operations). In our experience, ML compilation backends use internal representations and optimization passes that are too rich for this type of input, causing them to crash or time out during compilation. If you have encountered such issues, you may find Dr.Jit useful.

Cloning

Dr.Jit recursively depends on two other repositories: nanobind for Python bindings, and drjit-core providing core components of the JIT-compiler.

To fetch the entire project including these dependencies, clone the project using the --recursive flag as follows:

$ git clone --recursive https://github.com/mitsuba-renderer/drjit

Documentation

Please see Dr.Jit’s page on readthedocs.io for example code and reference documentation.

References, citations

Please see the paper Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering for the nitty-gritty details and details on the problem motivating this project. There is also a video presentation explaining the design decisions at a higher level.

If you use Dr.Jit in your own research, please cite it using the following BibTeX entry:

@article{Jakob2022DrJit,
  author = {Wenzel Jakob and S{\'e}bastien Speierer and Nicolas Roussel and Delio Vicini},
  title = {Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering},
  journal = {Transactions on Graphics (Proceedings of SIGGRAPH)},
  volume = {41},
  number = {4},
  year = {2022},
  month = jul,
  doi = {10.1145/3528223.3530099}
}

Logo and history

The Dr.Jit logo was generously created by Otto Jakob. The “Dr.” prefix simultaneously abbreviates differentiable rendering with the stylized partial derivative D, while also conveying a medical connotation that is emphasized by the Rod of Asclepius. Differentiable rendering algorithms are growing beyond our control in terms of conceptual and implementation-level complexity. A doctor is a person, who can offer help in such a time of great need. Dr.Jit tries to fill this role to improve the well-being of differentiable rendering researchers.

Dr.Jit is the successor of the Enoki project, and its high-level API still somewhat resembles that of Enoki. The system evolved towards a different approach and has an all-new implementation, hence the decision to switch to a different project name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

drjit-1.3.0-cp314-cp314-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.14Windows x86-64

drjit-1.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp314-cp314-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

drjit-1.3.0-cp313-cp313-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.13Windows x86-64

drjit-1.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp313-cp313-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

drjit-1.3.0-cp312-cp312-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.12Windows x86-64

drjit-1.3.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

drjit-1.3.0-cp312-abi3-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.12+Windows x86-64

drjit-1.3.0-cp312-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12+manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp312-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.12+manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp312-abi3-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12+macOS 11.0+ ARM64

drjit-1.3.0-cp311-cp311-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.11Windows x86-64

drjit-1.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

drjit-1.3.0-cp310-cp310-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.10Windows x86-64

drjit-1.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

drjit-1.3.0-cp39-cp39-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.9Windows x86-64

drjit-1.3.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

drjit-1.3.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

drjit-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file drjit-1.3.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 32a629c26a0a624c7cd08db11965c56269ae74f399878b483d925edbbe9856da
MD5 06a2fb8547f9e60f276d7963f03f5693
BLAKE2b-256 f896f23a898a6f69be475e078d891179f5da2bc9ddc492de10602ed78b7dc402

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f06b27756e08fea232d3d53d8d837e1308d15ed3cc9e39ee8c17891af7aa4e7c
MD5 acb38a113183d7584bfc2e83808f1fa8
BLAKE2b-256 42365359b1aa2c2c1894529590bb23d60eef43d424f115c0b15979ce17c7ae5f

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 9d35bfaebd2c60eaf37995cb1601f86a2eb764be4125f4d63733c5e0fe00cb78
MD5 5197e8159cdbfb0f575370be7ba8a87d
BLAKE2b-256 6d1ba486b590e4844bcb98a3c36edff019ddacbf19753afa4fe37c65fc094790

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a23e122b4a9f0eae5384bdac37b0aed3af6c861f5792b734dd80a67cf2217a57
MD5 c20bf6ad03f659b6c01b7c664dde3096
BLAKE2b-256 f74ccafa91f86ef8c92d93a7789e6af70a5caf47f977f7e51b3120973f555c71

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5b9ab11e07e13c9ad9d84be1c6297afaffbf06323b32ced5568954ef69b558dd
MD5 4c1acc138cf1e7487c33707149a98d87
BLAKE2b-256 6a73494d941c8efc187d3d3225d945820d4331c336806420c3fb6394d022b97e

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b318baf508b33c4785b45cd55320d335cc097f0ab090ac655f4d13d68abf797f
MD5 403fe52e9a421a45868b3022edda1d54
BLAKE2b-256 0d06ee4127255c0176b162801cf68a53b95c5915a4bac2ccea9e0c16004b5ce7

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 9eb71958230dddb98daec3ded8a4e9f6d147e409fb4b5dbd4a8834297b048740
MD5 19af5ba5321a7eecc78e1b7ae7bb2c89
BLAKE2b-256 e6a6d593f00d148944b4a3009376a620be809b695bb663e56ad33c1931c73498

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 603174e2318088a4c0babc9edd86cfad461f93f55924317b4993223337495ec3
MD5 60a5765f8b8e04bea29580f08999a36f
BLAKE2b-256 71e610ada38ea85630bad63875174ac6a7a250f563eaec1b691b755f8f5b2802

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d6a4a693883bcf5b68508fb995bfb7534cded1a0f2796988bffed93299b29599
MD5 e53832bbd2497621de38792a5c25fc34
BLAKE2b-256 9bc6c13145cb5d20dfd3ceba2e8f9ec038aac737145b25b02eea52546f5e5f4d

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fb5f4838b170bdc60a7fdfd15aee56b50868106d8b64ab9bd443747ae9906df1
MD5 e8d10bf311ae8bcf43c835d4f898ef4b
BLAKE2b-256 d0b2919258da2c82d1fa241e114f47fc10a2c79232c8828f2663b62d9ae6da9f

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 671b51b591f6a901fa6c89fdb0531e9280045c55eee0c03d052e9d82ed163a66
MD5 d0e779da89a2ce95fb4f73d4102bcc17
BLAKE2b-256 014ee31f3042b953fff52fe19cff65cb7d42c457811198c975812828b69f3b7c

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77e941af2987ffc874306ec05d4189df7b41fbf356968bf5891f23b888067934
MD5 98efee208e1909f9c2c33f42f201e0f5
BLAKE2b-256 8023715130a595035f04321189d450d7d6f1397171bd7944d120a76101800532

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-abi3-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp312-abi3-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.12+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 5439f1d990acb1efdca1107304eb555b47d112b48c30631834eac819880f6f9e
MD5 4c484ac9e9aac829d0d81e79016e3e60
BLAKE2b-256 866c3f43e798d9b0ed3e593299056e5e93aae6ff916d90c841377bc1a83d1a7b

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cd454983c43daecc77b2f15d443de0d72717580fe662336d7556179c5ae1d1b1
MD5 9dc1bc83da7c26cc66c52a82b212818c
BLAKE2b-256 321d1619d97508cb5339a333acc0c8ca68c5016b306ea54859c8b7b70020378b

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 344016429ac0ef18e3f9b2172f86fd23b663141e6d051ccbaeca41474f5f3b03
MD5 7958de911d99656cea0f7638dd424d50
BLAKE2b-256 84ae327f0c25d3f652c6b9e007588909ad9a388369ab9f19b000166bb80831bf

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp312-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp312-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26da27231c25f6a824a0dba27a8f40011950178ac3c818583c44ed8db4bf5b55
MD5 806bd2a328cb18b84489abf0b46cd9a3
BLAKE2b-256 9c8e5b957f921275f2a676b38294fd34b2a87dd7e21975d313fe8d3e63c5cc86

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2b7c6fbe95297d555645b7990fabfd63b21bcffbcde81b17d414779712b45e25
MD5 ba002ed8f8d38f08a2c9d56b72760f2d
BLAKE2b-256 2e0b16e8368c75030dce8dbf6a6e4ad4929c092bc0257a786a5378a9d9c39b90

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5c23cdfdf8c86cd2374be12a8840fe7a5d10bec019be738ec925a1db2ee48981
MD5 b9e34f07abe9fc7b85ff31294061db21
BLAKE2b-256 4b174b534ffe04abf90aa6e29f84c3fa4a69a5cee94950ee26def8e82b4f3643

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 dc1265c6aa2a72837b13119893a011e1b9e26dc81f6f109f213a044620630f8e
MD5 764b5df8353300684fe67926c3bf927c
BLAKE2b-256 2a0f3b7c390bdb2c548a72a0c97e66fd41cedfad59e8f03f6c564e9c9d45c740

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a109d29f63725a6488dfa5bf483896b6eb5f403c215a54eb85e4b33f3dfc7884
MD5 72cd60f1504491b8df440987f1512853
BLAKE2b-256 469405b8a8e226e052c971aa826d3e160bc662e68b419442879e663e90212829

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b95c1164b22f2fbb693103ce7b71e5d6e20927744eddd7a02ba843c3d978d595
MD5 bb811dfe3f94e1a032496aed6e84f3a0
BLAKE2b-256 e765243d71b395567a703335881a078ed817a2afb5386d6205271e6f04539ca3

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a5ace690f5338c71249649699f3850b3a060a8b0ca2b860aaf3bb3f7b86e9580
MD5 803f026b128db87d2f6eded65e664d3c
BLAKE2b-256 934d6cf3f2d8c9075b7701ba2a1aa086776ffa9bbee42a364a57333a488b48ff

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 121c13f2982271fd05aeac99f6258c93be03369f428d6c5effb9fe1d9307db65
MD5 ade5b9be0090a1a39bc485fd0c087446
BLAKE2b-256 84e9157d8a83d87b3074ef8522ad42d42b67b39d6ad2587ed0a78e3a06fcee6b

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dcf99f3d9131f227b4706f1182de1c24fafefa8b8e4185865b9a7579050be3e
MD5 bc146d2391f990b854a02dab67cdfd55
BLAKE2b-256 1fb190f6b14e5f84eb8863b5aea20bf7379d54cf95ae9e710f587d2abb09c2e9

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: drjit-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for drjit-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1be4805c95b06d682b5491c8338bccea291deaf0a563057d93edf511a13f9c09
MD5 a5329c6971e09e5484141c9f8dd5b84b
BLAKE2b-256 406fe9cce3345e01c36fd7cad71ce4475023820ce114218c81d69db6e9c10d16

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b263f5a0167e9fa725daec178d333287e4edc46c7f2a38466bd4da67c10e6676
MD5 d1ad57a00c0a0a6150744cede1e5f9d6
BLAKE2b-256 a2c601a2deac15431bd80ffda117be453dda8c821c95f2bdd5adf044cc1e9c04

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 694ae39dfb248b537633c5a4f845f307a8f67214f32336d1771f66a49e4f57ee
MD5 0f748633046a2866f79e5128e4e82074
BLAKE2b-256 fe3ed06d40daf4ea11405d986b8fbe69eefef16fbe4bdb129ccd6b806c870dd9

See more details on using hashes here.

File details

Details for the file drjit-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for drjit-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 610ab62e7b6a3a184bb5db31a1af45c2cb35ecbb710da6844e92624849d88127
MD5 972fffd57832e372e1a0798ae4254141
BLAKE2b-256 f10c8cc252bc95662cb55d3b314dc0463849eafdc7eaa6d04fc535f335c79bdf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page