Skip to main content

MemVerge Flyte plugin

Project description

Flytekit Memory Machine Cloud Plugin

Flyte Connector plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.

To install the plugin, run the following command:

pip install flytekitplugins-mmcloud

To get started with MMCloud, refer to the MMCloud User Guide.

Getting Started

This plugin allows executing PythonFunctionTask using MMCloud without changing any function code.

Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.

ImageSpec may be used to define images to run tasks.

Credentials

The following secrets are required to be defined for the connector server:

  • mmc_address: MMCloud OpCenter address
  • mmc_username: MMCloud OpCenter username
  • mmc_password: MMCloud OpCenter password

Defaults

Compute resources:

  • If only requests are specified, there are no limits.
  • If only limits are specified, the requests are equal to the limits.
  • If neither resource requests nor limits are specified, the default requests used for job submission are cpu="1" and mem="1Gi", and there are no limits.

Example

example.py workflow example:

import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

from flytekitplugins.mmcloud import MMCloudConfig

image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return load_wine(as_frame=True).frame


@task(task_config=MMCloudConfig(), container_image=image_spec)  # Task will be submitted as MMCloud job
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))


@task(
    task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
    requests=Resources(cpu="1", mem="1Gi"),
    limits=Resources(cpu="2", mem="4Gi"),
    container_image=image_spec,
    environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)


@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )

Connector Image

Install flytekitplugins-mmcloud in the connector image.

A float binary (obtainable via the OpCenter) is required. Copy it to the connector image PATH.

Sample Dockerfile for building an connector image:

FROM python:3.11-slim-bookworm

WORKDIR /root
ENV PYTHONPATH /root

# flytekit will autoload the connector if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float

CMD pyflyte serve connector --port 8000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flytekitplugins_mmcloud-1.16.14.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

flytekitplugins_mmcloud-1.16.14-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file flytekitplugins_mmcloud-1.16.14.tar.gz.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.16.14.tar.gz
Algorithm Hash digest
SHA256 60208ef32f3a2cac38bcb2b0188113ce7ea08bd35773f77d3ffc4722d678c22c
MD5 20d8659095c11c5ab7d96c54fd595ecc
BLAKE2b-256 081f58c630a2ce90678cad285795c1ddab23381b893465e6ecbfe796717d4244

See more details on using hashes here.

File details

Details for the file flytekitplugins_mmcloud-1.16.14-py3-none-any.whl.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.16.14-py3-none-any.whl
Algorithm Hash digest
SHA256 0b6c0c5360f43ef6f2b3474bb492bddc192685e4808e9e03e53e16ce25e5da8c
MD5 5814c5948082ece64306179971b5980c
BLAKE2b-256 7faa239c340311a6d1a82db6b920ce2c6ea640d51bafe6d7fc6bb1153501c380

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page