Skip to main content

Models to make easier to deal with structures that are converted to, or read from JSON.

Project description

Jazzband https://badge.fury.io/py/jsonmodels.svg Tests PyPI Coverage

jsonmodels is library to make it easier for you to deal with structures that are converted to, or read from JSON.

Features

  • Fully tested with Python 3.8+.

  • Support for PyPy 3.9 and 3.10 (see implementation notes in docs for more details).

  • Create Django-like models:

    from jsonmodels import models, fields, errors, validators
    
    
    class Cat(models.Base):
    
        name = fields.StringField(required=True)
        breed = fields.StringField()
        love_humans = fields.IntField(nullable=True)
    
    
    class Dog(models.Base):
    
        name = fields.StringField(required=True)
        age = fields.IntField()
    
    
    class Car(models.Base):
    
        registration_number = fields.StringField(required=True)
        engine_capacity = fields.FloatField()
        color = fields.StringField()
    
    
    class Person(models.Base):
    
        name = fields.StringField(required=True)
        surname = fields.StringField(required=True)
        nickname = fields.StringField(nullable=True)
        car = fields.EmbeddedField(Car)
        pets = fields.ListField([Cat, Dog], nullable=True)
  • Access to values through attributes:

    >>> cat = Cat()
    >>> cat.populate(name='Garfield')
    >>> cat.name
    'Garfield'
    >>> cat.breed = 'mongrel'
    >>> cat.breed
    'mongrel'
  • Validate models:

    >>> person = Person(name='Chuck', surname='Norris')
    >>> person.validate()
    None
    
    >>> dog = Dog()
    >>> dog.validate()
    *** ValidationError: Field "name" is required!
  • Cast models to python struct and JSON:

    >>> cat = Cat(name='Garfield')
    >>> dog = Dog(name='Dogmeat', age=9)
    >>> car = Car(registration_number='ASDF 777', color='red')
    >>> person = Person(name='Johny', surname='Bravo', pets=[cat, dog])
    >>> person.car = car
    >>> person.to_struct()
    {
        'car': {
            'color': 'red',
            'registration_number': 'ASDF 777'
        },
        'surname': 'Bravo',
        'name': 'Johny',
        'nickname': None,
        'pets': [
            {'name': 'Garfield'},
            {'age': 9, 'name': 'Dogmeat'}
        ]
    }
    
    >>> import json
    >>> person_json = json.dumps(person.to_struct())
  • You don’t like to write JSON Schema? Let jsonmodels do it for you:

    >>> person = Person()
    >>> person.to_json_schema()
    {
        'additionalProperties': False,
        'required': ['surname', 'name'],
        'type': 'object',
        'properties': {
            'car': {
                'additionalProperties': False,
                'required': ['registration_number'],
                'type': 'object',
                'properties': {
                    'color': {'type': 'string'},
                    'engine_capacity': {'type': ''},
                    'registration_number': {'type': 'string'}
                }
            },
            'surname': {'type': 'string'},
            'name': {'type': 'string'},
            'nickname': {'type': ['string', 'null']}
            'pets': {
                'items': {
                    'oneOf': [
                        {
                            'additionalProperties': False,
                            'required': ['name'],
                            'type': 'object',
                            'properties': {
                                'breed': {'type': 'string'},
                                'name': {'type': 'string'}
                            }
                        },
                        {
                            'additionalProperties': False,
                            'required': ['name'],
                            'type': 'object',
                            'properties': {
                                'age': {'type': 'number'},
                                'name': {'type': 'string'}
                            }
                        },
                        {
                            'type': 'null'
                        }
                    ]
                },
                'type': 'array'
            }
        }
    }
  • Validate models and use validators, that affect generated schema:

    >>> class Person(models.Base):
    ...
    ...     name = fields.StringField(
    ...         required=True,
    ...         validators=[
    ...             validators.Regex('^[A-Za-z]+$'),
    ...             validators.Length(3, 25),
    ...         ],
    ...     )
    ...     age = fields.IntField(
    ...         nullable=True,
    ...         validators=[
    ...             validators.Min(18),
    ...             validators.Max(101),
    ...         ]
    ...     )
    ...     nickname = fields.StringField(
    ...         required=True,
    ...         nullable=True
    ...     )
    ...
    
    >>> person = Person()
    >>> person.age = 11
    >>> person.validate()
    *** ValidationError: '11' is lower than minimum ('18').
    >>> person.age = None
    >>> person.validate()
    None
    
    >>> person.age = 19
    >>> person.name = 'Scott_'
    >>> person.validate()
    *** ValidationError: Value "Scott_" did not match pattern "^[A-Za-z]+$".
    
    >>> person.name = 'Scott'
    >>> person.validate()
    None
    
    >>> person.nickname = None
    >>> person.validate()
    *** ValidationError: Field is required!
    
    >>> person.to_json_schema()
    {
        "additionalProperties": false,
        "properties": {
            "age": {
                "maximum": 101,
                "minimum": 18,
                "type": ["number", "null"]
            },
            "name": {
                "maxLength": 25,
                "minLength": 3,
                "pattern": "/^[A-Za-z]+$/",
                "type": "string"
            },
            "nickname": {,
                "type": ["string", "null"]
            }
        },
        "required": [
            "nickname",
            "name"
        ],
        "type": "object"
    }

    You can also validate scalars, when needed:

    >>> class Person(models.Base):
    ...
    ...     name = fields.StringField(
    ...         required=True,
    ...         validators=[
    ...             validators.Regex('^[A-Za-z]+$'),
    ...             validators.Length(3, 25),
    ...         ],
    ...     )
    ...     age = fields.IntField(
    ...         nullable=True,
    ...         validators=[
    ...             validators.Min(18),
    ...             validators.Max(101),
    ...         ]
    ...     )
    ...     nickname = fields.StringField(
    ...         required=True,
    ...         nullable=True
    ...     )
    ...
    
    >>> def only_odd_numbers(item):
    ... if item % 2 != 1:
    ...    raise validators.ValidationError("Only odd numbers are accepted")
    ...
    >>> class Person(models.Base):
    ... lucky_numbers = fields.ListField(int, item_validators=[only_odd_numbers])
    ... item_validator_str = fields.ListField(
    ...        str,
    ...        item_validators=[validators.Length(10, 20), validators.Regex(r"\w+")],
    ...        validators=[validators.Length(1, 2)],
    ...    )
    ...
    >>> Person.to_json_schema()
    {
        "type": "object",
        "additionalProperties": false,
        "properties": {
            "item_validator_str": {
                "type": "array",
                "items": {
                    "type": "string",
                    "minLength": 10,
                    "maxLength": 20,
                    "pattern": "/\\w+/"
                },
                "minItems": 1,
                "maxItems": 2
            },
            "lucky_numbers": {
                "type": "array",
                "items": {
                    "type": "number"
                }
            }
        }
    }

(Note that only_odd_numbers did not modify schema, since only class based validators are able to do that, though it will still work as expected in python. Use class based validators that can be expressed in json schema if you want to be 100% correct on schema side.)

  • Lazy loading, best for circular references:

    >>> class Primary(models.Base):
    ...
    ...     name = fields.StringField()
    ...     secondary = fields.EmbeddedField('Secondary')
    
    >>> class Secondary(models.Base):
    ...
    ...    data = fields.IntField()
    ...    first = fields.EmbeddedField('Primary')

    You can use either Model, full path path.to.Model or relative imports .Model or …Model.

  • Using definitions to generate schema for circular references:

    >>> class File(models.Base):
    ...
    ...     name = fields.StringField()
    ...     size = fields.FloatField()
    
    >>> class Directory(models.Base):
    ...
    ...     name = fields.StringField()
    ...     children = fields.ListField(['Directory', File])
    
    >>> class Filesystem(models.Base):
    ...
    ...     name = fields.StringField()
    ...     children = fields.ListField([Directory, File])
    
    >>> Filesystem.to_json_schema()
    {
        "type": "object",
        "properties": {
            "name": {"type": "string"}
            "children": {
                "items": {
                    "oneOf": [
                        "#/definitions/directory",
                        "#/definitions/file"
                    ]
                },
                "type": "array"
            }
        },
        "additionalProperties": false,
        "definitions": {
            "directory": {
                "additionalProperties": false,
                "properties": {
                    "children": {
                        "items": {
                            "oneOf": [
                                "#/definitions/directory",
                                "#/definitions/file"
                            ]
                        },
                        "type": "array"
                    },
                    "name": {"type": "string"}
                },
                "type": "object"
            },
            "file": {
                "additionalProperties": false,
                "properties": {
                    "name": {"type": "string"},
                    "size": {"type": "number"}
                },
                "type": "object"
            }
        }
    }
  • Dealing with schemaless data

(Plese note that using schemaless fields can cause your models to get out of control - especially if you are the one responsible for data schema. On the other hand there is usually the case when incomming data are with no schema defined and schemaless fields are the way to go.)

>>> class Event(models.Base):
...
...     name = fields.StringField()
...     size = fields.FloatField()
...     extra = fields.DictField()

>>> Event.to_json_schema()
{
    "type": "object",
    "additionalProperties": false,
    "properties": {
        "extra": {
            "type": "object"
        },
        "name": {
            "type": "string"
        },
        "size": {
            "type": "float"
        }
    }
}

DictField allow to pass any dict of values (“type”: “object”), but note, that it will not make any validation on values except for the dict type.

  • Compare JSON schemas:

    >>> from jsonmodels.utils import compare_schemas
    >>> schema1 = {'type': 'object'}
    >>> schema2 = {'type': 'array'}
    >>> compare_schemas(schema1, schema1)
    True
    >>> compare_schemas(schema1, schema2)
    False

More

For more examples and better description see full documentation: http://jsonmodels.rtfd.org.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonmodels-2.8.0.tar.gz (41.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

jsonmodels-2.8.0-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file jsonmodels-2.8.0.tar.gz.

File metadata

  • Download URL: jsonmodels-2.8.0.tar.gz
  • Upload date:
  • Size: 41.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.4

File hashes

Hashes for jsonmodels-2.8.0.tar.gz
Algorithm Hash digest
SHA256 9c37ae58f0417252b743ee1fa85fc937d9696e16520824f6b221f19f62f08f9c
MD5 8fe7bda2a40b92e5d3fcdb7e676fd8ad
BLAKE2b-256 04850e02cbc656ef7f0f5d3db13be5b622c231bf55bbad6a8c4612ce95fcb8cf

See more details on using hashes here.

File details

Details for the file jsonmodels-2.8.0-py3-none-any.whl.

File metadata

  • Download URL: jsonmodels-2.8.0-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.4

File hashes

Hashes for jsonmodels-2.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b7a603de1caf328d38d2aac961fe692ffc63d979e23f63ee89f264dbb0e4820f
MD5 da208df4499d49f0da1884259f69ceb5
BLAKE2b-256 2da69ea75c902007d9e52350156617f5583df805bc0157ace4f317e2acb6e05f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page