Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library design is heavily influenced by Leland Wilkinson's work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more, see the documentation site at lets-plot.org/python.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more, see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more, see the Lets-Plot Compose Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more, see the Lets-Plot Kotlin API project at GitHub.

Documentation

Kotlin API documentation site: lets-plot.org/kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.8.0

  • geom_pointdensity() Geometry

    f-25e/images/geom_pointdensity.png

    See example notebook.

  • Explicit group aesthetic now overrides default grouping behavior instead of combining with it

[!IMPORTANT] BREAKING CHANGE:

Previously, setting group='variable' would group by both the explicit variable AND any discrete aesthetics (color, shape, etc.).
Now it groups ONLY by the explicit variable, matching ggplot2 behavior.
Use group=[var1, var2, ...] to group by multiple variables explicitly,
and group=[] to disable any grouping.

f-25e/images/group_override_defaults.png

See example notebook.

  • gggrid(): support for shared legends (parameter guides)

    f-25e/images/group_override_defaults.png

    See example notebook.

  • Better handling of missing values in geom_line(), geom_path(), geom_ribbon(), and geom_area()

    f-25e/images/missing_values_ribbon.png

    See example notebook.

  • geom_histogram(): custom bin bounds (parameter breaks)

    See example notebook.

  • Legend automatically wraps to prevent overlap — up to 15 rows for vertical legends and 5 columns for horizontal ones

    See example notebook.

  • flavor_standard() resets the theme's default color scheme

    Use to override other flavors or make defaults explicit.

    See example notebook.

  • 'left', 'right', 'top', and 'bottom' legend justification

    See example notebook.

  • ggtb(): Added size_zoomin and size_basis parameters to control point size scaling behavior when zooming (works with geom_point and related layers).

    See: example notebook.

  • And More

    See CHANGELOG.md for a full list of changes.

Recent Updates in the Gallery

images/changelog/4.8.0/square-cities_density.png images/changelog/4.7.0/square-raincloud.png images/changelog/4.7.0/square-europe_capitals.png images/changelog/4.7.0/square-trading_chart.png f-25a/images/magnifier_inset.png f-25a/images/ggbunch_indonesia.png images/changelog/4.7.0/square-lets_plot_in_2024.png images/changelog/4.7.0/square-plot_layout_scheme.png f-24g/images/theme_legend_scheme.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2025, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

lets_plot-4.8.2-cp314-cp314-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.14Windows x86-64

lets_plot-4.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp314-cp314-macosx_12_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.14macOS 12.0+ ARM64

lets_plot-4.8.2-cp314-cp314-macosx_10_13_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

lets_plot-4.8.2-cp313-cp313-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.13Windows x86-64

lets_plot-4.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp313-cp313-macosx_12_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

lets_plot-4.8.2-cp313-cp313-macosx_10_15_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

lets_plot-4.8.2-cp312-cp312-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp312-cp312-macosx_11_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.8.2-cp312-cp312-macosx_10_15_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

lets_plot-4.8.2-cp311-cp311-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp311-cp311-macosx_11_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.8.2-cp311-cp311-macosx_10_15_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

lets_plot-4.8.2-cp310-cp310-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp310-cp310-macosx_11_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.8.2-cp310-cp310-macosx_10_15_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

lets_plot-4.8.2-cp39-cp39-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.8.2-cp39-cp39-macosx_11_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.8.2-cp39-cp39-macosx_10_15_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

File details

Details for the file lets_plot-4.8.2-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for lets_plot-4.8.2-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 c02c9247456b4dae73a21be5f6eb98a6d3792b5385971729508030a91d0a6c59
MD5 2d3bc66c14e1faa26516738832072119
BLAKE2b-256 cb7b31c745b81885737f6db11ae703cece24bfad1fe9c00d20fb3f2327fd0416

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 85974b8f7970ad63b21df43f28704bb4625d4fb40ed8941f66407d92bb943941
MD5 3696f5c8becbceea3ab54cbb442405fa
BLAKE2b-256 029f9bf2d04b67babf9374b6eff434c5ca37073c22f43198b539d34f09df56a4

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 aa256e2f8d1849fbd5b7f04dbdf15d5f1238c67c370dd3e223b0df1a797623cb
MD5 0f63bbb5ff77121cdebac73e9cbe96dd
BLAKE2b-256 1a111a36ba1babe217bc79471e1d76f4f38cdbea5dfbfac95b36e23c6633c31a

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp314-cp314-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp314-cp314-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 575f8d4309cb9d4816a748e2ab7e1ba2d8b58026efb60773d6bc172d5226fcac
MD5 2ae5eafc523ea11ad86b8d03ee818ffc
BLAKE2b-256 54a5d0cf288b382ce563770c7f43f58f820eaa713c9666957b5a9babec7e7fc5

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1aede126f692e98f8f0a769d9619a431a1ea94bdb0e5decde3a5de41963574f3
MD5 4a3a47383f0bb4508037f89a97e9286a
BLAKE2b-256 50905959040e03b36f8f4f01bab0ed2a227ad652ec97a8811329422bbb3ec8b4

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for lets_plot-4.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5d8fd7ac7987bf687c4ca46f9185b3bb2999ccef39777d58f1d531bd45defa00
MD5 c73ddaaf5bab7e81f4026500efac1ee3
BLAKE2b-256 27f2bf2132225d38412ca573e2c628926da764d82879920adcc2e0373397bced

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1b871ec8d1aaa56522e7339d2804de582d77d4599a05c526123ecfe8931f6a3a
MD5 29fad261dbd597f271f7441f7faae6de
BLAKE2b-256 b8b96ff0979db2ef9323f0c07d6ef1cde559eba918e6132a544b6730648fd28c

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 fcb77bb46f481e3adddf66193e9cfe8a18357aee9783317df5d1e42559addf5c
MD5 866563ae28c9ecd9e735825ee6866992
BLAKE2b-256 f64ee24ec33743db5d31db538a081a540019ce84edbdc68ad6dc26fba466bc2d

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8afbcc5ffdf231a0911f6758fb99137a336b60114226b3c11edb24a329e877f7
MD5 3fd28f94f66734bc96f1b7c56a051c56
BLAKE2b-256 8d095ae1512ab9f810a806d546a3627b9c484b8af1f87b236d5fe17bbd96f251

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6dce73ae1dec70eacb2b9f83c2c085d7c89424fc3039291a5e7cced0972904c6
MD5 e9fd3adb5919022c312ed506e6ca8d9b
BLAKE2b-256 78c029b864090b5a04396f5b22e3918d293500b0732f5c6a9f56f8d9d4261712

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for lets_plot-4.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 165c85a2b89aabc7d9b41c05000ea379f607ced35416f5906cde313ed8e05c30
MD5 ac233ca351a166b3d92fafb171071093
BLAKE2b-256 cba84919641f4956532e21301c67c40c02ca161fb4afd2e76e725a624af357b3

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ef403de7988369cdcd14694f49744c219c7401648d3e40a73df1b4eddb0a489e
MD5 e9b4f3fa953eeaf213f456ba6782b3d9
BLAKE2b-256 2aaa60ca56b300f88988388907dc551c033198b75443646c00739eac8fcb3b57

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 facc70ace490845b95fc946044aff2b2fdad37f2faf8e45654d7b772491dcb74
MD5 f9b21a3318db52d508d7364fa0e2bd57
BLAKE2b-256 cff5e8121c13facbe0856e23f05a24b43092d9090db30125a90f9487fb7ba124

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc648228b4ba755a9955360623ccab1461794c8fb926aa93b7b2c96d8773dead
MD5 2b97b83aa9a36a81659a55106f35326d
BLAKE2b-256 2345af03b985c2c27d876d59c3a18dc1f432b0c4a3a737dccbe65c2c1d490ada

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3ec736bf53cd49a70f923c90e577ca7437800f5669d1ea670201fbab35956650
MD5 3295f70480da74211f274489eab0f064
BLAKE2b-256 f00f482093d67aba3a1f0d455e11ef69af675e2c9dfb4f7a8a8b6eb0f0e511f2

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for lets_plot-4.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5b173679a97fc9d694537c12278257310c06bcb1ebd3ca7fcbbd23dea0b8c8e3
MD5 99148c7c326ebc2cc4ac921a11c212ed
BLAKE2b-256 005324b1859ff4cb4df08f846054c45daf57a6f7da070935272a427b4f0f4850

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 31833fe762dc2d31624eb84e88e4db88b93ab467e9797af9db128afebdc275ef
MD5 1dfbfaf70f56de4f92ece1371a501b2f
BLAKE2b-256 0ef363f9908f503659ac0879542cf3012a3405f89579aae0cf90a9dc2d64bbca

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 0612765c4878677fef65a7fc1ba87d07c264389fae6158a93a077a9a50e86269
MD5 c73f65ac6bd53860e5678a7f370cc7b5
BLAKE2b-256 dd527189ec79f0043dca4c17a9e62d4191e04a8a9fdb1d02db45d594025303f1

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67c861af6e9f9ea5b29a8b32a5123c2a21a6ad31232ff77f2cff56286385c393
MD5 9ad46f38ebf5a35b6fd7c9e7d6afc4a3
BLAKE2b-256 a9962f381afb2cfc488a736646254ae4211700a1dce7f043ec98f473999c44ae

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b16c4fca1487a7f88e737fdfca6d35f5f364f40ae04fd9d8f35c513684c3754f
MD5 26d9baf3b4a2f1e1cd9c0f95c8856a32
BLAKE2b-256 9bf2687c26783a27cdf29fa74c4bd82dfb59b366520020168db8dedafc1c15b8

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for lets_plot-4.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b47b4131e6122f650a155feb1c2040977bd60694759d09e3eaa5a4df8b48087b
MD5 e073919210a177a785e8bd06af0a5a44
BLAKE2b-256 08d8c0c53feef804972b6e2383f1430814936a20200505e70332c8527155baf9

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f53ae86508de13e4f164718d34f39e5e7a57bb2727e3346c79532aa58a215ab6
MD5 ab815151bbf6f46dcaeaa1fd28b09cfd
BLAKE2b-256 6a16cf29034346622cd6502427965d63f7a5feb03e91810a01214a9d3701dcf4

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 ef88be5eee0ac63ac01c3d064bf786df5549b59d2e38c8dfff69008e13e12e55
MD5 1d04639cf5c02023d66ac45038cfeca5
BLAKE2b-256 83b4bd0ec1a13614a2247df47fa614736052340ef92aa5ce2cbb04faa05a2623

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5f3c86fa9b8d7e2f0de6df271bb4f48e6833efe0dd78eb48a2cf820dac67bb2
MD5 2f41f7745cd454a446eb903f483f07da
BLAKE2b-256 31fd74ee7585b5595671b2292982d65645dd1849a06f83daf399251a6ec338b5

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 22b278dfa23d7c1b044398550a644536cf774fa562630c7572fc8e648d2724e1
MD5 314c5767ebfc399fd88d46d9c532fcff
BLAKE2b-256 5380d52c9ca798c6d9493b0384690f626f1e846b7628563c4abd382440c2712a

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for lets_plot-4.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8b719f38cfa7f6139888f9c4d3d7c296635475fc4829c724a5827d118bae1986
MD5 42ab7780617a756926db619e31589a38
BLAKE2b-256 cda1d17b3c87424cb93eb00ae95099d973c93cb52c5b96cf47372eda27ff68a1

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 90286a409ddb18ea01acbb4cd8f07edae7e82cf9b6e674100ac5b69bd7a42dc7
MD5 eefecf862c0a61817ac90f5ea73723ad
BLAKE2b-256 e6fb4dd0e08d0d1e1db5cec2676b62652b3e002ab528893f0d91042564b668e7

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d502297fc76f41395d521582fb6a27f843ccadd0b12388ad1beb16c75103ec9a
MD5 501eb795c19a0ea4f012c8c4b671f865
BLAKE2b-256 afc8a39be38bf812ba09c6573dfce8cbef7cc4b7deb34aef4b90d75bb7e2fcac

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd0d5ccb332503a9ebd540221bf0df763d97088645996f63b3a2129043c7ebdf
MD5 04f92baee5e2e275c645db6c1963db48
BLAKE2b-256 f3fd67bb042182ad4b9865634eb65e935e8e6c25d791dc2dd4307e9199f91560

See more details on using hashes here.

File details

Details for the file lets_plot-4.8.2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.8.2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 68b5a5de2a9a9258260f5a927173d02132ea8288ec3953880cb6fa1b18f797d5
MD5 eb5763b41d3dd60642f65c2bdc3c8502
BLAKE2b-256 7c1382618ed91c1eb76d83421dddf63ce0b570ed56f3ca0dacb1a37b2eca5296

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page