Skip to main content

A Flexible Network Data Analysis Framework

Project description

NFStream Logo


NFStream is a multiplatform Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data easy and intuitive. It aims to be Python's fundamental high-level building block for doing practical, real-world network flow data analysis. Additionally, it has the broader goal of becoming a unifying network data analytics framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3 pypy3
Project License License
Continuous Integration Linux WorkFlows MacOS WorkFlows Windows WorkFlows
Code Quality Coverage Fuzzing Quality

Table of Contents

Main Features

  • Performance: NFStream is designed to be fast: AF_PACKET_V3/FANOUT on Linux, multiprocessing, native CFFI based computation engine, and PyPy full support.
  • Encrypted layer-7 visibility: NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
  • System visibility: NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.
  • Statistical features extraction: NFStream provides state of the art of flow-based statistical feature extraction. It includes post-mortem statistical features (e.g., minimum, mean, standard deviation, and maximum of packet size and inter-arrival time) and early flow features (e.g. sequence of first n packets sizes, inter-arrival times, and directions).
  • Flexibility: NFStream is easily extensible using NFPlugins. It allows the creation of a new flow feature within a few lines of Python.
  • Machine Learning oriented: NFStream aims to make Machine Learning Approaches for network traffic management reproducible and deployable. By using NFStream as a common framework, researchers ensure that models are trained using the same feature computation logic, and thus, a fair comparison is possible. Moreover, trained models can be deployed and evaluated on live networks using NFPlugins.

How to get it?

Binary installers for the latest released version are available on Pypi.

pip install nfstream

Windows Notes: NFStream does not include capture drivers on Windows (license restrictions). It is required to install Npcap drivers before installing NFStream. If Wireshark is already installed on Windows, then Npcap drivers are already installed, and you do not need to perform any additional action.

How to use it?

Encrypted application identification and metadata extraction

Dealing with a big pcap file and want to aggregate into labeled network flows? NFStream make this path easier in a few lines:

from nfstream import NFStreamer
# We display all streamer parameters with their default values.
# See documentation for detailed information about each parameter.
# https://www.nfstream.org/docs/api#nfstreamer
my_streamer = NFStreamer(source="facebook.pcap", # or live network interface
                         decode_tunnels=True,
                         bpf_filter=None,
                         promiscuous_mode=True,
                         snapshot_length=1536,
                         idle_timeout=120,
                         active_timeout=1800,
                         accounting_mode=0,
                         udps=None,
                         n_dissections=20,
                         statistical_analysis=False,
                         splt_analysis=0,
                         n_meters=0,
                         max_nflows=0,
                         performance_report=0,
                         system_visibility_mode=0,
                         system_visibility_poll_ms=100)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      application_name='TLS.Facebook',
      application_category_name='SocialNetwork',
      application_is_guessed=0,
      application_confidence=4,
      requested_server_name='facebook.com',
      client_fingerprint='t12d1310h2_27a29bd8d6e6_85173d161f9a',
      server_fingerprint='2d1eb5817ece335c24904f516ad5da12',
      user_agent='',
      content_type='')

System visibility

NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="Intel(R) Wi-Fi 6 AX200 160MHz", # Live capture mode. 
                         # Disable L7 dissection for readability purpose only.
                         n_dissections=0,
                         system_visibility_poll_ms=100,
                         system_visibility_mode=1)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=59339,
      dst_ip='184.73.244.37',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1638966705265,
      bidirectional_last_seen_ms=1638966706999,
      bidirectional_duration_ms=1734,
      bidirectional_packets=98,
      bidirectional_bytes=424464,
      src2dst_first_seen_ms=1638966705265,
      src2dst_last_seen_ms=1638966706999,
      src2dst_duration_ms=1734,
      src2dst_packets=22,
      src2dst_bytes=2478,
      dst2src_first_seen_ms=1638966705345,
      dst2src_last_seen_ms=1638966706999,
      dst2src_duration_ms=1654,
      dst2src_packets=76,
      dst2src_bytes=421986,
      # The process that generated this reported flow. 
      system_process_pid=14596,
      system_process_name='FortniteClient-Win64-Shipping.exe')

Post-mortem statistical flow features extraction

NFStream performs 48 post-mortem flow statistical features extraction, which includes detailed TCP flags analysis, minimum, mean, maximum, and standard deviation of both packet size and inter-arrival time in each direction.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # Disable L7 dissection for readability purpose.
                         n_dissections=0,  
                         statistical_analysis=True)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      bidirectional_min_ps=66,
      bidirectional_mean_ps=302.36842105263156,
      bidirectional_stddev_ps=425.53315715259754,
      bidirectional_max_ps=1454,
      src2dst_min_ps=66,
      src2dst_mean_ps=149.44444444444446,
      src2dst_stddev_ps=132.20354676701294,
      src2dst_max_ps=449,
      dst2src_min_ps=66,
      dst2src_mean_ps=440.0,
      dst2src_stddev_ps=549.7164925870628,
      dst2src_max_ps=1454,
      bidirectional_min_piat_ms=0,
      bidirectional_mean_piat_ms=72.22222222222223,
      bidirectional_stddev_piat_ms=137.34994188549086,
      bidirectional_max_piat_ms=398,
      src2dst_min_piat_ms=0,
      src2dst_mean_piat_ms=130.375,
      src2dst_stddev_piat_ms=179.72036811192467,
      src2dst_max_piat_ms=415,
      dst2src_min_piat_ms=0,
      dst2src_mean_piat_ms=110.77777777777777,
      dst2src_stddev_piat_ms=169.51458475436397,
      dst2src_max_piat_ms=409,
      bidirectional_syn_packets=2,
      bidirectional_cwr_packets=0,
      bidirectional_ece_packets=0,
      bidirectional_urg_packets=0,
      bidirectional_ack_packets=18,
      bidirectional_psh_packets=9,
      bidirectional_rst_packets=0,
      bidirectional_fin_packets=0,
      src2dst_syn_packets=1,
      src2dst_cwr_packets=0,
      src2dst_ece_packets=0,
      src2dst_urg_packets=0,
      src2dst_ack_packets=8,
      src2dst_psh_packets=4,
      src2dst_rst_packets=0,
      src2dst_fin_packets=0,
      dst2src_syn_packets=1,
      dst2src_cwr_packets=0,
      dst2src_ece_packets=0,
      dst2src_urg_packets=0,
      dst2src_ack_packets=10,
      dst2src_psh_packets=5,
      dst2src_rst_packets=0,
      dst2src_fin_packets=0)

Early statistical flow features extraction

NFStream performs early (up to 255 packets) flow statistical features extraction (referred to as SPLT analysis in the literature). It is summarized as a sequence of these packets' directions, sizes, and inter-arrival times.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # We disable l7 dissection for readability purpose.
                         n_dissections=0,
                         splt_analysis=10)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      # The sequence of 10 first packet direction, size and inter arrival time.
      splt_direction=[0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
      splt_ps=[74, 74, 66, 262, 66, 1454, 66, 1454, 66, 463],
      splt_piat_ms=[0, 303, 0, 0, 313, 0, 0, 0, 0, 1])

Pandas export interface

NFStream natively supports Pandas as an export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#pandas-dataframe-conversion
from nfstream import NFStreamer
my_dataframe = NFStreamer(source='teams.pcap').to_pandas()[["src_ip",
                                                            "src_port",
                                                            "dst_ip", 
                                                            "dst_port", 
                                                            "protocol",
                                                            "bidirectional_packets",
                                                            "bidirectional_bytes",
                                                            "application_name"]]
my_dataframe.head(5)

Pandas

CSV export interface

NFStream natively supports CSV file format as an export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#csv-file-conversion
flows_count = NFStreamer(source='facebook.pcap').to_csv(path=None,
                                                        columns_to_anonymize=(),
                                                        flows_per_file=0,
                                                        rotate_files=0)

Extending NFStream

Didn't find a specific flow feature? add a plugin to NFStream in a few lines:

from nfstream import NFPlugin
    
class MyCustomPktSizeFeature(NFPlugin):
    def on_init(self, packet, flow):
        # flow creation with the first packet
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size = 1
        else:
            flow.udps.packet_with_custom_size = 0
 
    def on_update(self, packet, flow):
        # flow update with each packet belonging to the flow 
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size += 1


extended_streamer = NFStreamer(source='facebook.pcap', 
                               udps=MyCustomPktSizeFeature(custom_size=555))

for flow in extended_streamer:
    # see your dynamically created metric in generated flows
    print(flow.udps.packet_with_custom_size) 

Machine Learning models training and deployment

The following simplistic example demonstrates how to train and deploy a machine-learning approach for traffic flow categorization. We want to run a classification of Social Network category flows based on bidirectional_packets and bidirectional_bytes as input features. For the sake of brevity, we decide to predict only at the flow expiration stage.

Training the model

from nfstream import NFPlugin, NFStreamer
import numpy
from sklearn.ensemble import RandomForestClassifier

df = NFStreamer(source="training_traffic.pcap").to_pandas()
X = df[["bidirectional_packets", "bidirectional_bytes"]]
y = df["application_category_name"].apply(lambda x: 1 if 'SocialNetwork' in x else 0)
model = RandomForestClassifier()
model.fit(X, y)

ML powered streamer on live traffic

class ModelPrediction(NFPlugin):
    def on_init(self, packet, flow):
        flow.udps.model_prediction = 0
    def on_expire(self, flow):
        # You can do the same in on_update entrypoint and force expiration with custom id. 
        to_predict = numpy.array([flow.bidirectional_packets,
                                  flow.bidirectional_bytes]).reshape((1,-1))
        flow.udps.model_prediction = self.my_model.predict(to_predict)

ml_streamer = NFStreamer(source="eth0", udps=ModelPrediction(my_model=model))
for flow in ml_streamer:
    print(flow.udps.model_prediction)

More NFPlugin examples and details are provided in the official documentation. You can also test NFStream without installation using our live demo notebook.

Building from sources l m w

To build NFStream from sources, please read the installation guide provided in the official documentation.

Contributing

Please read Contributing for details on our code of conduct and the process for submitting pull requests to us.

Ethics

NFStream is intended for network data research and forensics. Researchers and network data scientists can use this framework to build reliable datasets and train and evaluate network-applied machine learning models. As with any packet monitoring tool, NFStream could be misused. Do not run it on any network that you do not own or administrate.

Credits

Citation

NFStream paper is published in Computer Networks (COMNET). If you use NFStream in a scientific publication, we would appreciate citations to the following article:

@article{AOUINI2022108719,
  title = {NFStream: A flexible network data analysis framework},
  author = {Aouini, Zied and Pekar, Adrian},
  doi = {10.1016/j.comnet.2021.108719},
  issn = {1389-1286},
  journal = {Computer Networks},
  pages = {108719},
  year = {2022},
  publisher = {Elsevier},
  volume = {204},
  url = {https://www.sciencedirect.com/science/article/pii/S1389128621005739}
}

Authors

The following people contributed to NFStream:

Supporting organizations

The following organizations supported NFStream:

sah tuke ntop nmap google

Publications that use NFStream

More than 100 research papers have already used NFStream as part of their processing pipelines.

License

This project is licensed under the LGPLv3 License - see the License file for details

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

nfstream-6.6.0-cp314-cp314t-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.14tWindows x86-64

nfstream-6.6.0-cp314-cp314t-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp314-cp314t-musllinux_1_2_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp314-cp314t-macosx_11_0_arm64.whl (985.8 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

nfstream-6.6.0-cp314-cp314t-macosx_10_15_x86_64.whl (151.7 kB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

nfstream-6.6.0-cp314-cp314-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.14Windows x86-64

nfstream-6.6.0-cp314-cp314-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp314-cp314-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp314-cp314-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

nfstream-6.6.0-cp314-cp314-macosx_10_15_x86_64.whl (151.4 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

nfstream-6.6.0-cp313-cp313-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.13Windows x86-64

nfstream-6.6.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp313-cp313-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp313-cp313-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

nfstream-6.6.0-cp313-cp313-macosx_10_13_x86_64.whl (151.2 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

nfstream-6.6.0-cp312-cp312-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.12Windows x86-64

nfstream-6.6.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp312-cp312-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp312-cp312-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

nfstream-6.6.0-cp312-cp312-macosx_10_13_x86_64.whl (151.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

nfstream-6.6.0-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11Windows x86-64

nfstream-6.6.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp311-cp311-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp311-cp311-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

nfstream-6.6.0-cp311-cp311-macosx_10_9_x86_64.whl (151.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

nfstream-6.6.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10Windows x86-64

nfstream-6.6.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp310-cp310-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp310-cp310-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

nfstream-6.6.0-cp310-cp310-macosx_10_9_x86_64.whl (151.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

nfstream-6.6.0-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9Windows x86-64

nfstream-6.6.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

nfstream-6.6.0-cp39-cp39-musllinux_1_2_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

nfstream-6.6.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

nfstream-6.6.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

nfstream-6.6.0-cp39-cp39-macosx_11_0_arm64.whl (985.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

nfstream-6.6.0-cp39-cp39-macosx_10_9_x86_64.whl (151.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file nfstream-6.6.0-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 fe0520c7d6379203f5f8eba5f60b3a51ae3d17a09fe6de8076c917f9cc873da9
MD5 e3eaec6cef5b144b363f6e634e671736
BLAKE2b-256 53b5965ddbc362d7960654f154a0ee80bbe70e7e74ea6ef5b54f9017c4ab68dd

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6646520fa0798425d5dd6858fbb0974d9bd991829b11224f4e5db24de9e3f77e
MD5 02bf66535176a5fda463ad8f71de6b79
BLAKE2b-256 d15ed1345eb4185faf1d4794ee126aee67fdfae2ea1d3446c4f0401efd1e2a1f

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edee89340d72f85e33f31c56d950cb10d628bf4ca72a06f920e7331bf818aafe
MD5 14b553ddac722021096b1deaab139639
BLAKE2b-256 d12dfd6f35551b31e39ca4c9f49a0fba65aa703ab472d035ce82d52a55fa4c86

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 14a14d703c62a05dafc7db73c5cf34bfef865821b23b5c5b953ccbd2b4660b51
MD5 a48d96b87d44351b83f211b005ea44d9
BLAKE2b-256 12de9c1792f1cb8ebb6b190cb03c427d6b07c228a5144a99be3aebb439aa14db

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 b36342728730cb28877282ba1c52bcaa3540b81c5739201c6e74c92912399193
MD5 47aa5784e97c1c0c87cc3f4e2cf76bd9
BLAKE2b-256 6c312da2bb995673ce29afd60aab1180f905ee8f702181210547c7371bd236f1

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2e31d34fd3bd062bdc074f8d428df365bdc0e1418cec9fbeb916e17d1cb1630
MD5 111be3d9c3fb7e11892f7f58b36d6a40
BLAKE2b-256 ffed675b15703a4283fc960441a695139487123b6fc0c5fb0330ced56f618320

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 432b5914a3924ca70d90ec1a6df25c99dcbb805eeacf248201516ca574dce6dc
MD5 5edad50ab170009d91e7e3204e275859
BLAKE2b-256 856ed1bfa53284857a1f152fcdcc3aac59e90e5a38476be0df63cdf41decbb09

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 02747cf3c1abfcde8f7bd4a87e64c56ce1a1f0e085148baf325c7ec238b5d83f
MD5 f0195e9bcb1171616314c8e0fabbb87e
BLAKE2b-256 c254d279fe48bddc68efb3aabc8dd1b0bb74427fd899e7eb7e60197399bd8c9a

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0687fd23d3f85bc7bf08de21fef1ca4d8060e03f98b9047a6aca11940a802428
MD5 ed0ba60522285bd8bca160141eb46aed
BLAKE2b-256 df5e122c32b98947554b7f28854e8f9b7fce29430702f9fb35a5e34c673696f6

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 788eeeb34bf0977a622a2c449ebf619ae89dc9373a48e8a21cfb9e0680b78828
MD5 422869c0ff8ee1e15b70d38bcdb8ec69
BLAKE2b-256 eaf83f12f64d1cbe83db7778842d727626fc66c5df5cd402dc59c102a617dc97

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 463743057aae6135bdb918e8203b35f3a71f2a74073302d64cf0afd5c30c724f
MD5 4e59fb6bb8be90481bc3540c5a2a83f7
BLAKE2b-256 27c80c834446f3584f717b20ec6c2c0a66c905e2551e0e9d0b39a7585289fd75

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 db91df3798eaf582231041186dba3c90b5a0678c1b4249c2840569cc87c7d8ca
MD5 0dda7841965e31cbf441ae3515dca346
BLAKE2b-256 89f7d1a5d0d51cb78a2dc6f635907b517f7104804ac420fe83133b700bd64dad

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d20e561939dc47dfa28d5d46d6cacf4b63a5e574c9d46672ce7abb3c6c9c139
MD5 f0e5a4f44121e99f48d1d42c31fb5994
BLAKE2b-256 6854429502cc6293c43a74871e4e077fa3f7ff6866416185fb62bdf8182d685b

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8d8a966fb2dbfefea7acf948c19ee4b2b32b25f95f9e5b52435405f26a4e3cbc
MD5 0f1da65c1b1077a2d296b4d8f645915b
BLAKE2b-256 bbf33277ac508bd8cb5e019210a065ccd7c5c9ea95e6790c280793d91c26e452

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b6485d93c001b2c16d2196c33641eff374bbd7036b1446d275629c76f41712fe
MD5 98744dd3d2c8248c639cfa8eb02ad296
BLAKE2b-256 0a296ba1d2ec00d9327b648a559ecc99b94381f4fae37a1b03df9bb485ba3253

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f8c5fec4c494e242973a3336293dede4f1a38d9dd83241e941b42358f9bf8c3c
MD5 4d1f7fbb5aa03cc9d2d07639bf58f534
BLAKE2b-256 c39c3622fb29c5105d3fb70e2ed486be5785e89c975ab207fbc123a03014146d

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ffd536c2e9ef41d4ebe422d56d65943fcba3420ced92c93321032eea672438dd
MD5 cd57418c375d1348605e8289092952a2
BLAKE2b-256 7c3788391fe7d97e4844937dc95e6bcffa20ef3fc897cb87fc65493d65480859

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1972e15847e2e436048fd577611a7ca58f990c7f4a2a3324f5240c9816bbf333
MD5 45a7905814e41926d3eb6595341cd11e
BLAKE2b-256 2a212ddfe9a98c2d37f881db8ffc7875859bc0a85673afd8bc0ede46769dd61d

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 3867269277a95e2c7795e4f58972abd72d444c018d00057e6606a9f9d1d2f8e3
MD5 d654520f105c1837bc5556a2fa6fbd68
BLAKE2b-256 de26020002e44b425c7b1276c205e93793e6db3e591bf771d49872efa971043e

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3df8198b0be28fa97bcdc7b765d8c6004aaff5b8debfdcf497d8e3141e4578c
MD5 a4e5cbecc67611e1e131aff171eab7c2
BLAKE2b-256 2b98380ee4a65e44c00389a102ade02e680674fa97ac39ccd44eecdbcb699549

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 886117c7a0baf2dc382e9692df22d3956579d4fce1e5ed9451ec11b9f55e037f
MD5 37270a9fb0e391a54485628471ddc071
BLAKE2b-256 d475babce93f809c2a8cc59d05a7263bc80567cc1922a99e053ee5e5483ae9a4

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e5b42bb9c7a2591ffab39444fb85ee13238f9c07d0b0141ca047fb3ec6fcd738
MD5 90044f554c687b3f402cc7345477d321
BLAKE2b-256 d5502289c0a849aee546a4f466d0f73d9772dc0559ae3b611c8fda422e711c2c

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0ace0ac1b4f114bae2f2d5363d5f3706a03781527c72eead923338c70f976c9a
MD5 69d40da5b3ca9ef51dae0f4af5165dce
BLAKE2b-256 5e3d3f3b01401ef6e8c3628d518be8d8bd857f2ffed7900e6a4def00d5238ba2

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7624d8af543a13b6a5de571070c6c6445a54c7799dbbf6dfce60e127db24ad66
MD5 2bc17b5f0eccf32152031a73383fc414
BLAKE2b-256 bc592cb1408be738c9b1ebc933956f8bf246249582332bad31420825525a3625

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 394a6e6c074bc2f3870538606d8223e15c9aae9285bb8cf3ffbb33f380ebe4b9
MD5 d4317833159f1a6c03ceefaab941aa4a
BLAKE2b-256 3fdaf30ea8deefcdf2653487a76ac0f0019103067bc6474e24ba6f919481728f

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 3ee20796212269b12530dc6317e3945342d44712417ff03d443974e1f6a4ce21
MD5 774ded8c0c1fb0f383d35cd28eade783
BLAKE2b-256 1feb4b228ec21130053cac9ece2d4b14d8a237313cd28164c696cc2fb4d66f1f

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33b121589da4de22a451ac0b3816f52010656ed320ba9b6fdb56cf9bdb0e5cf1
MD5 38aedb06568a6b1b201ca91835ecffbc
BLAKE2b-256 9d8c4d3a00a6baf0dc541dea38091120362e01b5bfd7e607dd672eb2e86dc0d8

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ebe5829b088e21e7b3bdfa0cf8eaf8c2c2823beaa5fb948e7b01a9fddd91c768
MD5 917edcda95c6babc567c0d75b1357a40
BLAKE2b-256 d41e0f01795bdd64577394af15aae184274a02931d91ff032e4982623b37673e

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 79d9ba47b5b90a5e73e238745623c571349d754870abb9502187671522f51dce
MD5 50baf8da22c0c562561cd186aca9f5ef
BLAKE2b-256 c0f6c502ad2fdd432f538600687b47a2f4fdbf0778e3eb763abf6c39ed375256

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1b2319b821191e5c0595b0c3447bd0ccc5c8bffc76d0f84d5dffdc1748b88b46
MD5 152b631f69dfb62f6fd0fd452d2f80c4
BLAKE2b-256 c04383f406d7b1e8aa7d8e06f0324d0c004b47fcb06a99bda6fee3685414d882

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d1fba2c0fdba501196c87b8e128af709cfc84c420444e2f06dae5f4128378e4f
MD5 2942e5cdada40b78145e2492150c6419
BLAKE2b-256 eac7f58004c84a688ef4a861d14680df0a95bc87fd1020de3fda1ba60ff9a06f

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 eb92ea053d79a7c5d1e3e577df5073f31fe7b06ec9dfa552525f8e13fa447caa
MD5 9ea9c00226ba6f87bb15b4f10de4fafc
BLAKE2b-256 a8409c5470fb20f9be3dd85edd1f3b5133d7074774ba38ce68719aa43b1f16e1

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 daa96177249d5d3d5ac28320750fa81941219ba917806ff2bc6233e130ac01f9
MD5 dfcae33929644b64c308d465818ee05b
BLAKE2b-256 f185b25bd11db32dbf1b0ceab57170e89457271ef682d23bdb7c392a5525bf91

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 556b9f71a960f9b636f69280f1677c8393eb3163c9ed432663323383e64d5421
MD5 a3af28ee0c46c3864763510ab304b138
BLAKE2b-256 38c24dbf9aa2f61a610b8408df9dffb44e5d89a6510b7a56e061a239272071f2

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38a6ec74d322237b6e577350219c4a39ae57c2775eb4deecb1368cb7400cf7df
MD5 aa77611d780547630e08f6df6a8338f4
BLAKE2b-256 519c008b846b86a6f3cd062ac15b0791906dca9ada8bc6a85ded6e4b847cde31

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bba849222647ac6b77a470b68664c05409f7b2743c4b0263a0a2dccb45b6835c
MD5 6f2c2f42b01127fe592f5cf85519a90a
BLAKE2b-256 bb9bb0d6de0a8835acb1b92541424f8b7854d643ae1cb3b8feff89e0fc5d61da

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7e673104b4b6e4c24eec2f79a8eab6968b92bda2b13572ef95c27351dd6d7f1f
MD5 b16bc85addf4c30006cd7863d668c964
BLAKE2b-256 d6232c292a86746acda16afb0f831dbb0d819761eea9759fa9fc26b2d74f906a

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 91d1989c96b123f296f4956d6d15c8dcd6b3376d1c3f53573f165cdcf5e93aab
MD5 327d383f44700c843be6ff8d4bcecbea
BLAKE2b-256 030621288c2afa97828af38e37273d71c552c6d5410bfdb8861b1f920255c0e8

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1c6b9a5b7562dbd60952ec71423abfae9d82adfa5c2419d826330bd0e0fb0448
MD5 01de0bcdb82355c3a3845bdd0af7eefa
BLAKE2b-256 be0d771e8fcc558b232ffc038ab41c38bbe1472f08db360ae297ba302d6f335b

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 98e73278d77416ddcaff33d52f3955a1050953327328391afde4aadaadb8318b
MD5 e1bdfc78b779bcfa82cdc374ce293a61
BLAKE2b-256 edada4c7133730a965b1d3a54e21b7bc835bd7e445f8c462fc234b7771dd0d1a

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 723e1c7fd3021c77467d0bc0986a0d8473327db4335a6dada5a99e39b1a7148e
MD5 2aa7aaff0e9192c199c546e7f6e700bf
BLAKE2b-256 5bc88579c6c4f8f3f9510d8f197448b2567c97b39726089c84905c5641896216

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5639425c21924bce7d1c986afc4ee649e68eb3c0d6d7e5075bd2182a5a5e419
MD5 259fc9f270196738caa91f6aa7173bba
BLAKE2b-256 e03076f2cf78ba4bf93967f4fc6028a6ea7d0af8dee99eac3fca02df500bdcf5

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5db7a5957b56c3bc18c10be0cd71d05c427de9eca3fa5e28091c9e03fe889fef
MD5 9f78c1b06ea5112ed5ef501e76738396
BLAKE2b-256 440e589fc3f4356ab925889895edd69f2e93696d49ea795cd24133d3106fdb16

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dfe1b3ea32eb0df466465a9d071f44a64a6b3c01e6cf906ca43520da5a9f9f85
MD5 ac8809a5d8443f9a816b0a0404abeb7e
BLAKE2b-256 f345825613ab6a3327ae3c963a0dee38118efcb1c5de0f59c0d38849c4344c9e

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3ad88d16e5e5a9d9a647b69a1bc7a9e00ed6d75475af9079f26d17d0b9668556
MD5 00bbc2b5215a2de7bd1a97edd8a5b5cf
BLAKE2b-256 72395702c2e3179840b4eeb18a875284c06c076f75e6e974116761d892ab151f

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e5ea265c6feb72b341c31b5bb93f16d002ef46ff35fc1588b7fab1c06db49a3c
MD5 b5c83e5ce8e2d0a0c0b5e52d47a0121a
BLAKE2b-256 d14732525b69b9b54dc9429c23390ff1f2ec221a897ade28be9f0c94775b2874

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 90e20eaea5f06e62e3649c94d4a689fbe1b553daf789a92222a8fcc2689c06d9
MD5 f4dec10a0078a6b64e295afbba6d246c
BLAKE2b-256 abe8a71a481aeaa5fc9a3ad7681632c80c14fe657516f738214af299c7d5e190

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8da8566df518b957992b1dc90cd70b2b1449518c0021f0cae343b37c9b2d9c4e
MD5 7aceacd03b5d74337e6d3821d227f7c6
BLAKE2b-256 f7be3a130a2328113fb506c669709f447248d08c7af3a68663e27f8631f310de

See more details on using hashes here.

File details

Details for the file nfstream-6.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c465d28f9acca4fdb77d8bf064e52c556caefa6a0e186d01bd0a8fdf3ccb9184
MD5 21c14aff9ec66e7b48b1c4d3d84b940c
BLAKE2b-256 3843d620ba3f58e454ce6dd1930d772e097ee18ab69d4b9cf981d926e34e5652

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page