Skip to main content

Phables: from fragmented assemblies to high-quality bacteriophage genomes

Project description

phables logo phables logo

Phables: from fragmented assemblies to high-quality bacteriophage genomes

DOI GitHub Code style: black GitHub last commit (branch) install with bioconda Conda Conda PyPI version Downloads CI CodeQL Documentation Status

Phables is a tool developed to resolve bacteriophage genomes using assembly graphs of viral metagenomic data. It models phage-like components in the viral metagenomic assembly as flow networks, models as a minimum flow decomposition problem and resolves genomic paths corresponding to flow paths determined. Phables uses the Minimum Flow Decomposition via Integer Linear Programming implementation to obtain the flow paths.

For detailed instructions on installation and usage, please refer to the documentation hosted at Read the Docs.

Phables is available on Bioconda at https://anaconda.org/bioconda/phables and on PyPI at https://pypi.org/project/phables/. Feel free to pick your package manager, but we recommend that you use conda.

NEW: Phables is now available as a Docker container from Docker hub. Click here for more details.

Setting up Phables

Option 1: Installing Phables using conda (recommended)

You can install Phables from Bioconda at https://anaconda.org/bioconda/phables. Make sure you have conda installed.

# create conda environment and install phables
conda create -n phables -c conda-forge -c anaconda -c bioconda phables

# activate environment
conda activate phables

Now you can go to Setting up Gurobi to configure Gurobi.

Option 2: Installing Phables using pip

You can install Phables from PyPI at https://pypi.org/project/phables/. Make sure you have pip and mamba installed.

pip install phables

Now you can go to Setting up Gurobi to configure Gurobi.

Setting up Gurobi

The MFD implementation uses the linear programming solver Gurobi. The phables conda environment and pip setup does not include Gurobi. You have to install Gurobi using one of the following commands depending on your package manager.

# conda
conda install -c gurobi gurobi

# pip
pip install gurobipy

To handle large models without any model size limitations, once you have installed Gurobi, you have to activate the (academic) license and add the key using the following command. You only have to do this once.

grbgetkey <KEY>

You can refer to further instructions at https://www.gurobi.com/academia/academic-program-and-licenses/.

Test the installation

After setting up, run the following command to print out the Phables help message.

phables --help

Quick Start Guide

Phables is powered by Snaketool which packs in all the setup, testing, preprocessing and running steps into an easy-to-use pipeline.

Setup the databases

# Download and setup the databases - you only have to do this once
phables install

Run on test data

phables test

Run on your own data

# Run Phables using short read data
phables run --input assembly_graph.gfa --reads fastq/ --threads 8

# Run Phables using long read data
phables run --input assembly_graph.gfa --reads fastq/ --threads 8 --longreads

Please refer to the documentation hosted at Read the Docs for further information on how to run Phables.

Issues and Questions

If you want to test (or break) Phables give it a try and report any issues and suggestions under Phables Issues.

If you come across any questions, please have a look at the Phables FAQ page. If your question is not here, feel free to post it under Phables Issues.

Contributing to Phables

Are you interested in contributing to the Phables project? If so, you can check out the contributing guidelines in CONTRIBUTING.md.

Acknowledgement

Phables uses the Gurobi implementation of MFD-ILP and code snippets from STRONG, METAMVGL, GraphBin, MetaCoAG and Hecatomb. Special thanks are owed to Ryan Wick for developing Bandage to visualise assembly graphs, which I heavily rely upon to investigate, develop and optimise my methods. The Phables logo was designed by Amber Skye.

Citation

Phables is published in Bioinformatics at DOI: 10.1093/bioinformatics/btad586.

If you use Phables in your work, please cite Phables as,

Vijini Mallawaarachchi, Michael J Roach, Przemyslaw Decewicz, Bhavya Papudeshi, Sarah K Giles, Susanna R Grigson, George Bouras, Ryan D Hesse, Laura K Inglis, Abbey L K Hutton, Elizabeth A Dinsdale, Robert A Edwards, Phables: from fragmented assemblies to high-quality bacteriophage genomes, Bioinformatics, Volume 39, Issue 10, October 2023, btad586, https://doi.org/10.1093/bioinformatics/btad586

@article{10.1093/bioinformatics/btad586,
    author = {Mallawaarachchi, Vijini and Roach, Michael J and Decewicz, Przemyslaw and Papudeshi, Bhavya and Giles, Sarah K and Grigson, Susanna R and Bouras, George and Hesse, Ryan D and Inglis, Laura K and Hutton, Abbey L K and Dinsdale, Elizabeth A and Edwards, Robert A},
    title = "{Phables: from fragmented assemblies to high-quality bacteriophage genomes}",
    journal = {Bioinformatics},
    volume = {39},
    number = {10},
    pages = {btad586},
    year = {2023},
    month = {09},
    abstract = "{Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of challenges in viral assembly, fragmentation of genomes can occur, and existing tools may recover incomplete genome fragments. Therefore, the identification and characterization of novel phage genomes remain a challenge, leading to the need of improved approaches for phage genome recovery.We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49\\% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99\\% average nucleotide identity, a distinction that existing tools are unable to make.Phables is available on GitHub at https://github.com/Vini2/phables.}",
    issn = {1367-4811},
    doi = {10.1093/bioinformatics/btad586},
    url = {https://doi.org/10.1093/bioinformatics/btad586},
    eprint = {https://academic.oup.com/bioinformatics/article-pdf/doi/10.1093/bioinformatics/btad586/51972145/btad586.pdf},
}

Also, please cite the following tools/databases used by Phables.

  • Roach MJ, Pierce-Ward NT, Suchecki R, et al. Ten simple rules and a template for creating workflows-as-applications. PLOS Computational Biology 18(12) (2022): e1010705. https://doi.org/10.1371/journal.pcbi.1010705
  • Terzian P, Olo Ndela E, Galiez C, et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genomics and Bioinformatics, Volume 3, Issue 3, lqab067 (2021). https://doi.org/10.1093/nargab/lqab067
  • Steinegger M and Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35, 1026–1028 (2017). https://doi.org/10.1038/nbt.3988
  • Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100 (2018). https://doi.org/10.1093/bioinformatics/bty191
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools, Bioinformatics, Volume 25, Issue 16, Pages 2078–2079 (2009). https://doi.org/10.1093/bioinformatics/btp352
  • Woodcroft BJ and Newell R. CoverM: Read coverage calculator for metagenomics (2017). https://github.com/wwood/CoverM
  • Roach, M. J., Hart, B. J., Beecroft, S. J., et al. Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235, (2024). https://doi.org/10.21105/joss.06235
  • Kazutaka Katoh, Kazuharu Misawa, Kei‐ichi Kuma, and Takashi Miyata. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, Volume 30, Issue 14, Pages 3059–3066, (2002).
  • Kazutaka Katoh and Daron M. Standley. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, Volume 30, Issue 4, Pages 772–780 (2013).
  • Robert Neil McArthur, Thomas King-Fung Wong, Yapeng Lang, et al. piqtree: A Python Package for Seamless Phylogenetic Inference with IQ-TREE. bioRxiv 2025.07.13.664626; doi: https://doi.org/10.1101/2025.07.13.664626.
  • Lam-Tung Nguyen, Heiko A. Schmidt, Arndt von Haeseler and Bui Quang Minh. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, Volume 32, Issue 1, Pages 268–274, (2015).
  • Subha Kalyaanamoorthy, Bui Quang Minh, Thomas K F Wong, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods volume 14, pages587–589 (2017).
  • Hagberg AA, Schult DA, and Swart PJ. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15 (2008).
  • Gurobi Optimization. https://www.gurobi.com/.
  • Cogent3. https://cogent3.org/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phables-1.5.0.tar.gz (359.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

phables-1.5.0-py3-none-any.whl (378.6 kB view details)

Uploaded Python 3

File details

Details for the file phables-1.5.0.tar.gz.

File metadata

  • Download URL: phables-1.5.0.tar.gz
  • Upload date:
  • Size: 359.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for phables-1.5.0.tar.gz
Algorithm Hash digest
SHA256 9b1e68d4528a5f3a607739f4af7ac4569e8b31a8ed13315561bcf7f049ebe6c2
MD5 3959cbaef4df4fc694126bd63dbaa4ac
BLAKE2b-256 4d65fc911064ed1bcdf8866b799f28a2033ca1ad863b30c0da49fa9d50d080f6

See more details on using hashes here.

File details

Details for the file phables-1.5.0-py3-none-any.whl.

File metadata

  • Download URL: phables-1.5.0-py3-none-any.whl
  • Upload date:
  • Size: 378.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for phables-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fddac30ac73eb4eec46333fbe3bfc35e7ece00ef07a46baa1390b51160132e54
MD5 36044ff2ce00355d648655e793241207
BLAKE2b-256 27c5a7198441565ff4feda37ff4bd2082c93a8cf0219f74764089786ad2fdfbb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page