Skip to main content

A Python module and wrapper for ETERNA PREDICT to compute gravitational tides on Earth

Project description

PyGTide

DOI

A Python module and wrapper for ETERNA PREDICT to compute gravitational tides on Earth

PyGTide is a Python module that wraps around ETERNA PREDICT 3.4 which is compiled from Fortran into an executable using f2py. The original ETERNA PREDICT 3.3 was written by the late Prof. H.-G. Wenzel (Wenzel, 1996) in a mix of Fortran 77 and 90. This was updated by Kudryavtsev (2004) to include the latest tidal catalogue. Note that the original Fortran code was comprehensively revised in order to facilitate integration into Python. The original Fortran code for ETERNA PREDICT can be downloaded from the International Geodynamics and Earth Tide Service (IGETS).

How to use

There are two options:

  • Download and install on your system (see below instructions)
  • Via our online calculator: groundwater.app

How to install and run

Prerequisites

  • Download and install Anaconda or Miniconda
  • Install required packages:
    conda install numpy pandas
    

Installation options

Option 1: Install and compile source distribution from PyPi (Python 3.8–3.11) or install pre-compiled distribution (Linux, macOS, Windows; Python>=3.12)

pip install pygtide

Option 2: Build from source locally (Linux, macOS, Windows; Python>=3.8)

Requirements for building:

  • A Fortran compiler (e.g., gfortran via MinGW on Windows; included in Linux/macOS gcc toolchains) conda install gfortran
  • Meson build system with ninja: automatically installed via pip

Clone repo from git:

git clone https://github.com/hydrogeoscience/pygtide.git

Install from local repository:

cd /path/to/pygtide

pip install .

After installation

  • Run tests to verify installation:

    python -c "import pygtide; pygtide.test(msg=True)"
    
  • Update internal database files (downloads latest leap seconds and pole data):

    python -c "import pygtide; pygtide.update()"
    

Example usage

See pygtide/tests.py for complete examples. Quick start:

from pygtide import predict_series
args = (-20.82071, -70.15288, 830.0, '2020-01-01', 6, 600)
series = predict_series(*args, statazimut=90, tidalcompo=8)

How to use

An updated user guide is currently in progress ...

How to cite

If you use PyGTide, please cite the work as:

Rau, Gabriel C. (2018) hydrogeoscience/pygtide: PyGTid. Zenodo. https://doi.org/10.5281/zenodo.1346260

Example

This image shows Earth tides calculated for the city Karlsruhe (Germany) in the year 2018.

References

  • Hartmann, T., and H.-G. Wenzel (1995), The HW95 tidal potential catalogue, Geophysical Research Letters, 22(24), 3553–3556, https://doi.org/10.1029/95GL03324.
  • Kudryavtsev, S. M. (2004), Improved harmonic development of the Earth tide-generating potential, Journal of Geodesy, 17(12), 829-838, https://doi.org/10.1007/s00190-003-0361-2.
  • Wenzel, H.-G. (1996), The nanogal software: Earth tide data processing package ETERNA 3.30, Bulletin d’Informations des Marées Terrestres, 124, 9425–9439.
  • McMillan, T. C., and Rau, G. C., and Timms, W. A., and Andersen, M. S. (2019), Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential, Reviews of Geophysics, https://dx.doi.org/10.1029/2018RG000630.

License

PyGTide is released by Gabriel C. Rau and Tom Eulenfeld under the Mozilla Public License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygtide-0.8.2.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pygtide-0.8.2-cp314-cp314-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.14Windows x86-64

pygtide-0.8.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pygtide-0.8.2-cp314-cp314-macosx_15_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

pygtide-0.8.2-cp313-cp313-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.13Windows x86-64

pygtide-0.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pygtide-0.8.2-cp313-cp313-macosx_15_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

pygtide-0.8.2-cp312-cp312-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.12Windows x86-64

pygtide-0.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pygtide-0.8.2-cp312-cp312-macosx_15_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

File details

Details for the file pygtide-0.8.2.tar.gz.

File metadata

  • Download URL: pygtide-0.8.2.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygtide-0.8.2.tar.gz
Algorithm Hash digest
SHA256 02b811e5613aee61e7263c050e58738eb47f28852417b6f5c6d8b6145ff8b9d3
MD5 b478592f18fec141a47ab2ecd9c53a5a
BLAKE2b-256 88cebf040074d4acad0f19114ad0fb2e34459b5bbc81b567c3028c9dce23f311

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pygtide-0.8.2-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygtide-0.8.2-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 3dd09936834cba92ad6aebe0479e05405cef91bc042e20a7c6dbff3dc07f3a08
MD5 3dfa938737c719589822c168be5ca4b2
BLAKE2b-256 b0d47d33c678e106e1f6318c72e96e0203e5570a1e2ae7fc7e63f2f95014739d

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1eb3a93a1d997f7524adff75257dcbb38038fa917d495cb371cd6d1fbeee5a83
MD5 94eef9613c13ea7c861736bd2eba4b90
BLAKE2b-256 ce1b3406673c08b695b376ff27a2dc796a6a5b14ab02e090bfa5607049b32db8

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 bac55d2cdada986a4ae362e3f3da0d1c3b660fb9cda19f00c0923e93e52dd6ff
MD5 9e08da59de24b670ff6fab468e3b3be8
BLAKE2b-256 80ce52ccdb541e4cd27c83040bed60aff8186e08aa937eb4ad3bf3c128f13e3a

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pygtide-0.8.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygtide-0.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b6175b280326e5f7a8107d537c7bf26fe5569952a3c08d6020a29593150867de
MD5 2ee8880e8e8e350894105bb212e8d921
BLAKE2b-256 1628c504bfa8f025dc98a7b887ae764b7965b0fe866c0ab82664f7c4517215fe

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4474665abc1daafaf975a5113decea0a46c70ca807736347a64fc0f14e67b09d
MD5 0891f30eca19e8e515d4fe16a170ab77
BLAKE2b-256 c2205206175bed5eaa47d54ee78098d9d957254dcfaa5209af81cae038783253

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 d2e45b2be1b7ca6dd7152d43cb6f42e5a8311d10cb60257fb6789674ab60aeec
MD5 30d8b2120133b7d8d0e55e79aa363288
BLAKE2b-256 e3294b184f71752a4125a8d4b9a8f9f4f657ec8d6eb0791606611c9b82504fc9

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pygtide-0.8.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygtide-0.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 736087d7f6895385cc50d0a2a970b886210c4b2a5be64beb9b0720c8b430fc86
MD5 28187655d6580d0dcc951c1222394e7f
BLAKE2b-256 2b03f2d2d7f7985c01d9e7c0d198b3a668969293d4bc794dfafecfcd684823da

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cd37bf2ed2e97af132bf34c344625387764926ceec6e6b32f83ada9a34dd9259
MD5 1b2b74624f99058508d13058a18b7415
BLAKE2b-256 813688cf821bbb8528c7cee860fe6a6feb5591ab4e357ab23e015cc000848b39

See more details on using hashes here.

File details

Details for the file pygtide-0.8.2-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pygtide-0.8.2-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 d903d4013536090075ec0e815f857b2992da36f4259c42f85691b853e886a3c6
MD5 b0c5e898a5269333854dd5449c6d6acc
BLAKE2b-256 59b9ff7ee629d353947d342a9ef247ba8ae927a12759040cbac3bd470d338017

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page