Skip to main content

Python interface to the NCSA HDF4 library

Project description

Tests Pypi build Anaconda-Server Badge

pyhdf

pyhdf is a python wrapper around the NCSA HDF version 4 library. The SD (Scientific Dataset), VS (Vdata) and V (Vgroup) API's are currently implemented. NetCDF files can also be read and modified. It supports both Python 2 and Python 3.

Note: The sourceforge pyhdf website and project are out-of-date. The original author of pyhdf have abandoned the project and it is currently maintained in github.

Version 0.9.x was called python-hdf4 in PyPI because at that time we didn't have access to the pyhdf package in PyPI. For version 0.10.0 and onward, please install pyhdf instead of python-hdf4.

Installation

See pyhdf installation instructions or doc/install.rst.

Documentation

See pyhdf documentation.

Additional documentation on the HDF4 format can be found in the HDF4 Support Page.

Examples

Example python programs using the pyhdf package can be found inside the examples/ subdirectory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhdf-0.11.6.tar.gz (150.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyhdf-0.11.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (534.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-pp310-pypy310_pp73-macosx_14_0_arm64.whl (529.8 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pyhdf-0.11.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (534.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-pp39-pypy39_pp73-macosx_14_0_arm64.whl (529.6 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pyhdf-0.11.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (534.0 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-pp38-pypy38_pp73-macosx_14_0_arm64.whl (529.8 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pyhdf-0.11.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (539.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp313-cp313-win_amd64.whl (188.7 kB view details)

Uploaded CPython 3.13Windows x86-64

pyhdf-0.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (780.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp313-cp313-macosx_14_0_arm64.whl (533.9 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

pyhdf-0.11.6-cp312-cp312-win_amd64.whl (188.7 kB view details)

Uploaded CPython 3.12Windows x86-64

pyhdf-0.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (780.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp312-cp312-macosx_14_0_arm64.whl (533.9 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

pyhdf-0.11.6-cp311-cp311-win_amd64.whl (188.1 kB view details)

Uploaded CPython 3.11Windows x86-64

pyhdf-0.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (780.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp311-cp311-macosx_14_0_arm64.whl (535.1 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

pyhdf-0.11.6-cp310-cp310-win_amd64.whl (188.1 kB view details)

Uploaded CPython 3.10Windows x86-64

pyhdf-0.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (770.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp310-cp310-macosx_14_0_arm64.whl (535.1 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

pyhdf-0.11.6-cp39-cp39-win_amd64.whl (188.1 kB view details)

Uploaded CPython 3.9Windows x86-64

pyhdf-0.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp39-cp39-macosx_14_0_arm64.whl (535.1 kB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

pyhdf-0.11.6-cp38-cp38-win_amd64.whl (188.0 kB view details)

Uploaded CPython 3.8Windows x86-64

pyhdf-0.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (765.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pyhdf-0.11.6-cp38-cp38-macosx_14_0_arm64.whl (535.3 kB view details)

Uploaded CPython 3.8macOS 14.0+ ARM64

pyhdf-0.11.6-cp37-cp37m-win_amd64.whl (187.2 kB view details)

Uploaded CPython 3.7mWindows x86-64

pyhdf-0.11.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (762.6 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

File details

Details for the file pyhdf-0.11.6.tar.gz.

File metadata

  • Download URL: pyhdf-0.11.6.tar.gz
  • Upload date:
  • Size: 150.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6.tar.gz
Algorithm Hash digest
SHA256 9f6de3dd0a9651581e11e9a20f33ba16f4c79fb316c76082060ab33aeef98c5a
MD5 ec49865042bdd29e69661aa04aadff6b
BLAKE2b-256 b87bce37450155a25fe6edebb6aa7a4e3d928833ae88db73de4e47071973e836

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1ccfd1368f8e9fc7155d104870b2abd83d4908cb4495cdbcfef68489382279b
MD5 185b7ad214d8298f1ab9f265a887ce2c
BLAKE2b-256 4001d34f79febcb2755c19019bcea01394e05528dc89a117b16926cac755915d

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 50fc0967a0fa8bb4484da94bae32c9296cb690abcdf21d7e7d33bb361d1750b8
MD5 cbae3e9b1e644f2ca491e83488b9c50c
BLAKE2b-256 c8a3fb83498f479f4590a3cd25b74334a49b79e60ed23239e052ba1fcda9d1ee

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0fa3a447872a71e69ea74b93a209297cfe1997dd7962478e78e1e3ac3b6a0db
MD5 9c939c1f2d9483ea3d0743ae87becc00
BLAKE2b-256 875ff84d9209bc8b89df427c0eab97c7b72fe00184064faff9d69f153cd89c40

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d509de3ed12a9ddbab5b971f650988bf208b94c0833fa866a9379ed83c8262b4
MD5 b4c448bce003d104c688ec4d62ef2a83
BLAKE2b-256 42284f36f1f40f4e52576867ec956b5dcb5b51564504529dae141bf827fbaba9

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ee94623f46fb8d623523ebc4b17f91e07ec6a65714d597659ca9f259f5c8d59
MD5 c49c10a89847f843793a431445427f80
BLAKE2b-256 4d107c1b45c8cebed294e9e74250ecd69fe2448b621e3e094e0b130414ecdcbb

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp38-pypy38_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp38-pypy38_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 33279d6d4ae14f8dfc24386cc3653fc900c7f8b69cb202cfd423bfc15797c72d
MD5 0966ea52d731c96e50477a33584b78cc
BLAKE2b-256 16ecd966c6c5597a31941c008d23001127933e3385c681b55ad91cccebdfa392

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00ffd678726841418a83f5cdc2908d978ae8364f0c32ea6cbf58959799c73c7f
MD5 24f85884bc8fcb780f1c8b5d94217307
BLAKE2b-256 3fd422e80ac1924d9120150a756874f8d1e453af234ea97a186e3a06cf620883

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 188.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2cce1f316ecc22472661a73470b4a7c92ce19ad17dbf58eed0615eecf6c8827d
MD5 9c811476f1b2aebcfb0c2463bb8d6494
BLAKE2b-256 4bac0849725e532eb4cc3578afce74685d0f0c8b8fe65cf18b688c7240cec54e

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b068905a11a095444cea19b128c23cbb0e5935a4a3bde764a2288b59ec0eb4a5
MD5 c710ee8d7445e8a72287e74c16644776
BLAKE2b-256 09de7a274c2dcbfc7a1c8d65f0d1e5bda2829fdaf509f39e97463348661bab93

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5f681a6c50ce8d452d7cca0d41f24f7706ced85e0651a12d71051ebd2261af16
MD5 61946a17260ce426b5797a14afa68332
BLAKE2b-256 51fe96a539be4a88cd4fbab3c30c8f0a89c0af69c4348ab3183bc586da498ee3

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 188.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 39265924b78d43bef273ab512139a8ff5459991b8f7729563177e45b51b64a28
MD5 21367f2e5448f6b8af76d51ebd21ea19
BLAKE2b-256 1fc469f0d35e789be4b0bc18ccfcaa3c59de9cf2ac3713cadb76bc93caf2f9b9

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ae014b96a5cab50226a8ee69f06275a37e9f0b3641694e34737196f593254c6
MD5 213fee3029e1fd8864d359d4bcebddd7
BLAKE2b-256 98c72f4622b8b24585eab712aaa8d515e81673164ce5ffc2e99772fbc50d42dc

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 053142ed95142cf946d66281e8c864d2197a32ef0d15927098dd42a7c578fafa
MD5 a322dba294cc0fa64ae3ec484ff74633
BLAKE2b-256 2eac6dec1412b0fe5b441c242e9d1216adfec331f4b56bf46c095979b5dc4c4b

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 188.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d88e2988ca63164bec7690b437795d1e8e49b1816289859202c4edd9cd721ba6
MD5 22ec8206a71f85ca6745b26f76ba5626
BLAKE2b-256 2c53dbce3370aca05d1d17b14c9bc3b6311ccb434b2e2695f5f7bc04cbf7c5b2

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f6f622343c5a91d6cebf560c96d1d8ba4a0d89f52aa08251af38e868db2e583
MD5 75573a6335637cddfdf445efd594ac40
BLAKE2b-256 82adc187ba2204f016a1f26a39533662520539d160b32c4214a724e20ff57769

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 293d3fd3a4db332b756370cfb1fe6d2a10f07a6fd75bcb389ae56ff3ceec8fdb
MD5 d24f52681a50b55fb65612f8ad664020
BLAKE2b-256 c5985292994d56d09ebf2b539abf172bbe874f145af1c4a95597ec3e0a492a2b

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 188.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 88b6755116b430f3261ca8f8a5bcf4b6c5572aca4f5df5ae6dc143cf3ef45975
MD5 f15354e0e61ac3c396d377b43041c4fd
BLAKE2b-256 ba9a6614798006ddd053870e7606638a19ece6aba326f433b93e0f9645112a09

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9de62d364d4ec1d1badc1b8bd3f1eb991b840cbbba594f7692ad3cd8ef260e7
MD5 9dcca924025994b524248a3e43b2b111
BLAKE2b-256 a56d4b62c049ab2d0d01631e58947315f83c640e7484b3eaebfed60029ff3825

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3a374ac9373feedb2f42c07ddb728fe04587c5dc7a5519ef8b3dec7e7f47b419
MD5 465fd1afa8880a3f10f8b8f2d6700d26
BLAKE2b-256 8f079ad9b8fab57a7c8aef354245bf182c5567770f0688ced852cc8d521c3638

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 188.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 154a1e2928941f0b1c0647971cb3f6b1f414da3f6331126113237c4c3a3e709d
MD5 d55b8ee1dd5c018e32927f508557db28
BLAKE2b-256 0c37b0a55cac87b3c93d3fb6f6d36779125c6c164e1b778a39e1a6e2347d932d

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b0704c894ee225b9578caaa5b5f8157bbe291fb03a303340e6d8c929b6c3951
MD5 a5b8fba534975a586a2766bc844ff905
BLAKE2b-256 d2547db615a6560e1fce4dcf42e2878e96488fc466b50eaa563bd1520483a0c5

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f5bf37178716255c47687e2d088438325df4335fce28192a29ceee3057468e74
MD5 91ae7565aad93ef60c0b1a4aaae62d73
BLAKE2b-256 ac38ef8235bf9dc6edc82b70a59978513216932c650b417a2062eb6123bb1061

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 188.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f41913032e539e960b5c428cb6e4437ae10d6bf82ceffe514467c90f542d033c
MD5 712f22dc90b29983617d4b4ea822bd5c
BLAKE2b-256 b23bf7c730d750ae5d548be1c04e8a4f8f0ab82544f7b4fe167ab3f13917729b

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 728fdd343bd1fef74b4266b7c39c7841b68d4ee695b873adad9bcc102a13f239
MD5 96aa9b299cdf75b80d86057c3e5966d6
BLAKE2b-256 f661e7a007ad2e1e9d3d8b557b48379ff8f378594511f5b1db42527ae263262c

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 fcf119706c438ca17d1554b85bd3c5d2f0feef4debd041a328319b0508d8fa9a
MD5 8c86a231a3f0baff6d1aa829d87abbc7
BLAKE2b-256 320842eda54f64e44a0307a8f3f247814664a76929d92c694cc655a9292204c4

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 187.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyhdf-0.11.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d2812017d75941b1ff76667040894d91a49a98585ebebfb9672423ef35a22141
MD5 8d1f40300b17271dd260c26b34d847d2
BLAKE2b-256 3aaf93deba023ba6a90c47158d391c0cee83463cdb6c5a8fe9aad1bc5e97c3ac

See more details on using hashes here.

File details

Details for the file pyhdf-0.11.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 947313318f2e3723a68b36600df8c0a523346c0e4b1b3e23b64ebc0893276d6a
MD5 4ca3e5861fccfed1815bd6ed210fd09e
BLAKE2b-256 7f0f742765f18b6d87652e42bf33a7331435f9f8665ff084f2caeec609033736

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page