Skip to main content

Helper funcs and tools for working with SQL in mysql, postgresql, and more

Project description

A lightweight, transparent wrapper around SQLAlchemy (both 1.x and 2.x) designed for interactive database exploration, debugging, testing, and REPL-driven development workflows. Rather than building yet another ORM or complex abstraction layer, sql-helper trusts you to understand SQL and provides transparent, immediate access to databases with minimal mental overhead.

It integrates seamlessly with IPython, supports automatic Docker database provisioning, and works across SQLite, MySQL, PostgreSQL, and Redshift with consistent APIs that adapt to database-specific behaviors. The library also provides adaptive result formatting based on the query structure. Single values for aggregations, simple lists for single columns, and lists of dictionaries for multiple columns.

Tested for Python 3.6 - 3.13 using both SQLAlchemy 1.x and 2.x against PostgreSQL 13 and MySQL 8.0 docker containers.

Connect with a DB url in the following formats:

  • postgresql://someuser:somepassword@somehost[:someport]/somedatabase

  • mysql://someuser:somepassword@somehost[:someport]/somedatabase

    • note: urls that start with ``mysql://`` will automatically be changed to use ``mysql+pymysql://`` since this packages uses the ``pymysql`` driver

  • sqlite:///somedb.db

  • redshift+psycopg2://someuser:somepassword@somehost/somedatabase

    • note: requires separate install of the ``sqlalchemy-redshift`` package

Install

First, ensure that the pg_config executable is on the system and that the cryptography dependency can either be built with Rust or the pre-compiled wheel can be used. (See “Dependencies” section below)

Then install with pip:

pip install sql-helper

Dependencies

pg_config for postgresql

sudo apt-get install -y libpq-dev

or

brew install postgresql

cryptography package

If using Python 3.6, be sure to update pip to at least version 20.3.4 (default pip is 18.1) so that the pre-compiled wheel for cryptography can be used. Otherwise, you will need to install the rust compiler so that the cryptography dependency can be built (curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y)

If using Python 3.5, there is no pre-compiled wheel for cryptography (even when upgrading pip to version 20.3.4). It also cannot be built if the rust compiler is installed. Support for Python 3.5 is effectively removed.

pymysql package

According to https://nvd.nist.gov/vuln/detail/CVE-2024-36039, pymysql versions below 1.1.1 are vulnerable to SQL injection. Version 1.1.1 is only available for Python 3.7+ (final version for Python 3.6 is 1.0.2; final working version for Python 3.5 is 0.9.3).

sqlalchemy-redshift

Only needed if connecting to AWS Redshift

pip install sqlalchemy-redshift

Configuration

sql-helper uses a settings.ini file for Docker and connection configuration:

[default]
postgresql_image_version = 13-alpine
mysql_image_version = 8.0
postgresql_username = postgresuser
postgresql_password = some.pass
postgresql_db = postgresdb
mysql_username = mysqluser
mysql_password = some.pass
mysql_root_password = root.pass
mysql_db = mysqldb
connect_timeout = 5
sql_url =

[dev]
postgresql_container_name = sql-helper-postgres
mysql_container_name = sql-helper-mysql
postgresql_port = 5432
mysql_port = 3306
postgresql_rm = False
mysql_rm = False
postgresql_data_dir =
mysql_data_dir =
postgresql_url = postgresql://postgresuser:some.pass@localhost:5432/postgresdb
mysql_url = mysql://mysqluser:some.pass@localhost:3306/mysqldb
sqlite_url = sqlite:////tmp/some-dev.db

[test]
postgresql_container_name = sql-helper-postgres-test
mysql_container_name = sql-helper-mysql-test
postgresql_port = 5440
mysql_port = 3310
postgresql_rm = True
mysql_rm = True
postgresql_data_dir =
mysql_data_dir =
postgresql_url = postgresql://postgresuser:some.pass@localhost:5440/postgresdb
mysql_url = mysql://mysqluser:some.pass@localhost:3310/mysqldb
sqlite_url = sqlite:////tmp/some-test.db

On first use, the default settings.ini file is copied to ~/.config/sql-helper/settings.ini

Use the APP_ENV environment variable to specify which section of the settings.ini file your settings will be loaded from. Any settings in the default section can be overwritten if explicity set in another section. If no APP_ENV is explicitly set, dev is assumed.

QuickStart

import sql_helper as sqh

# Connect to a database with automatic Docker container startup if needed
sql = sqh.SQL('postgresql://user:pass@localhost:5432/mydb', attempt_docker=True, wait=True)

# Execute queries with adaptive result formatting
# Single values are returned directly
user_count = sql.execute('SELECT count(*) FROM users')  # Returns: 42

# Single columns become simple lists
user_names = sql.execute('SELECT name FROM users LIMIT 3')  # Returns: ['Alice', 'Bob', 'Carol']

# Multiple columns become lists of dictionaries
users = sql.execute('SELECT id, name, email FROM users LIMIT 2')
# Returns: [{'id': 1, 'name': 'Alice', 'email': 'alice@example.com'}, ...]

# Explore schema interactively
tables = sql.get_tables()
columns = sql.get_columns('users', name_only=True)
timestamp_fields = sql.get_timestamp_columns('users', name_only=True)

# Insert data with automatic parameterization
sql.insert('users', {'name': 'David', 'email': 'david@example.com'})
sql.insert('users', [
    {'name': 'Eve', 'email': 'eve@example.com'},
    {'name': 'Frank', 'email': 'frank@example.com'}
])

# Interactive database selection (prompts user to choose from configured URLs)
selected_url = sqh.select_url_from_settings()
sql = sqh.SQL(selected_url, attempt_docker=True)

What you gain: Zero-friction database exploration with automatic environment setup, consistent result formatting across query types, and transparent SQL execution that you can inspect and debug. The library eliminates the cognitive overhead of connection management, driver selection, and result processing while preserving full control over the actual SQL being executed.

API Overview

Environment and Configuration Management

  • ``urls_from_settings()`` - Discover configured database connections

    • Returns: List of all configured connection URLs from settings.ini

    • Internal calls: None

  • ``select_url_from_settings()`` - Interactive database selection

    • Returns: User-selected connection URL from configured options

    • Internal calls: urls_from_settings(), ih.make_selections()

Docker Container Management

  • ``start_docker(db_type, exception=False, show=False, force=False, wait=True, sleeptime=2)`` - Launch database containers

    • db_type: ‘postgresql’ or ‘mysql’

    • exception: Raise exceptions on Docker errors

    • show: Display Docker commands and output

    • force: Stop and remove existing container before creating new one

    • wait: Block until database accepts connections

    • sleeptime: Seconds between connection attempts when waiting

    • Returns: Result from Docker operation

    • Internal calls: bh.tools.docker_postgres_start(), bh.tools.docker_mysql_start()

  • ``stop_docker(db_type, exception=False, show=False)`` - Stop database containers

    • db_type: ‘postgresql’ or ‘mysql’

    • exception: Raise exceptions on Docker errors

    • show: Display Docker commands and output

    • Returns: Result from Docker operation

    • Internal calls: bh.tools.docker_stop()

Core Database Operations

  • ``SQL(url, connect_timeout=5, attempt_docker=False, wait=False, **connect_args)`` - Create a database connection instance

    • url: Connection URL (postgresql://, mysql://, sqlite://, redshift+psycopg2://)

    • connect_timeout: Seconds to wait for connection before giving up

    • attempt_docker: Automatically start Docker container if connection fails and URL matches settings

    • wait: Block until Docker container is ready to accept connections

    • **connect_args: Additional arguments passed to underlying connection engine

    • Returns: Configured SQL instance ready for database operations

    • Internal calls: start_docker()

  • ``SQL.execute(statement, params={})`` - Execute SQL with adaptive result formatting

    • statement: SQL string or path to SQL file

    • params: Dictionary or list of dictionaries for parameterized queries

    • Returns: Adaptive results based on query structure: single values for aggregations, lists for single columns, list of dicts for multiple columns, single dict/value for single-row results with parentheses

    • Internal calls: None

  • ``SQL.insert(table, data)`` - Insert data with automatic parameterization

    • table: Target table name

    • data: Dictionary (single row) or list of dictionaries (multiple rows)

    • Returns: Generated INSERT statement string for debugging

    • Internal calls: None

  • ``SQL.call_procedure(procedure, list_of_params=[])`` - Execute stored procedures

    • procedure: Name of stored procedure

    • list_of_params: List of parameters to pass

    • Returns: List of results from procedure execution

    • Internal calls: None

Schema Discovery and Introspection

  • ``SQL.get_tables()`` - List all tables in the database

    • Returns: List of table names (PostgreSQL returns schema.tablename format)

    • Internal calls: None

  • ``SQL.get_schemas(sort=False)`` - List database schemas (PostgreSQL only)

    • sort: Alphabetically sort results

    • Returns: List of schema names

    • Internal calls: None

  • ``SQL.get_columns(table, schema=None, name_only=False, sort=False, **kwargs)`` - Examine table structure

    • table: Table name (supports schema.table notation for PostgreSQL)

    • schema: Schema name (optional, auto-detected from table if using dot notation)

    • name_only: Return simple list of column names instead of detailed dictionaries

    • sort: Alphabetically sort results

    • **kwargs: Additional arguments passed to column inspection

    • Returns: List of column dictionaries or column names if name_only=True

    • Internal calls: None

  • ``SQL.get_indexes(table, schema=None)`` - List table indexes

    • table: Table name

    • schema: Schema name (optional)

    • Returns: List of dictionaries with index information

    • Internal calls: None

Specialized Column Analysis

  • ``SQL.get_timestamp_columns(table, schema=None, name_only=False, sort=False, **kwargs)`` - Find date/time columns

    • table: Table name

    • schema: Schema name (optional)

    • name_only: Return simple list of column names instead of detailed dictionaries

    • sort: Alphabetically sort results

    • **kwargs: Additional arguments passed to column inspection

    • Returns: Columns that are DATE, DATETIME, TIME, or TIMESTAMP types

    • Internal calls: SQL.get_columns()

  • ``SQL.get_autoincrement_columns(table, schema=None, name_only=False, sort=False, **kwargs)`` - Find auto-incrementing columns

    • table: Table name

    • schema: Schema name (optional)

    • name_only: Return simple list of column names instead of detailed dictionaries

    • sort: Alphabetically sort results

    • **kwargs: Additional arguments passed to column inspection

    • Returns: Columns with autoincrement properties

    • Internal calls: SQL.get_columns()

  • ``SQL.get_required_columns(table, schema=None, name_only=False, sort=False, **kwargs)`` - Find required columns

    • table: Table name

    • schema: Schema name (optional)

    • name_only: Return simple list of column names instead of detailed dictionaries

    • sort: Alphabetically sort results

    • **kwargs: Additional arguments passed to column inspection

    • Returns: Columns that are not nullable and have no default value

    • Internal calls: SQL.get_columns()

  • ``SQL.get_non_nullable_columns(table, schema=None, name_only=False, sort=False, **kwargs)`` - Find non-nullable columns

    • table: Table name

    • schema: Schema name (optional)

    • name_only: Return simple list of column names instead of detailed dictionaries

    • sort: Alphabetically sort results

    • **kwargs: Additional arguments passed to column inspection

    • Returns: Columns that cannot contain NULL values

    • Internal calls: SQL.get_columns()

Stored Procedure Management

  • ``SQL.get_procedure_names(schema=’’, sort=False)`` - List stored procedures

    • schema: Schema name (PostgreSQL only)

    • sort: Alphabetically sort results

    • Returns: List of procedure names

    • Internal calls: None

  • ``SQL.get_procedure_code(procedure)`` - View procedure source code

    • procedure: Procedure name

    • Returns: String containing the procedure definition

    • Internal calls: None

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sql_helper-0.1.0-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file sql_helper-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: sql_helper-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for sql_helper-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9f9362c65b1d2e29365015c2357ab4c1c10f59f4ca4954579cd7e0c802b97937
MD5 f2e345d71dc2f7e231636b1b3c81166b
BLAKE2b-256 053030dca9687797f37f22265ea734458d6c37e5d4f5aa8918d3296b2f225b19

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page