Skip to main content

Python library for backtesting and analyzing trading strategies at scale

Project description


[!TIP] New in 0.28:

  • Plotly 6 support
  • ticker_kwargs in YFData
  • Fixed Pandas TA dependency (→ pandas-ta-classic).

:package: Installation

pip install -U vectorbt

To install optional dependencies as well:

pip install -U "vectorbt[full]"

:sparkles: Usage

VectorBT lets you backtest strategies in just a few lines of Python.

  • Profit from investing $100 in Bitcoin since 2014:
import vectorbt as vbt

data = vbt.YFData.download("BTC-USD")
price = data.get("Close")

pf = vbt.Portfolio.from_holding(price, init_cash=100)
print(pf.total_profit())
19501.10906763755
  • Buy when the 10-day SMA crosses above the 50-day SMA, and sell on the opposite crossover:
fast_ma = vbt.MA.run(price, 10)
slow_ma = vbt.MA.run(price, 50)
entries = fast_ma.ma_crossed_above(slow_ma)
exits = fast_ma.ma_crossed_below(slow_ma)

pf = vbt.Portfolio.from_signals(price, entries, exits, init_cash=100)
print(pf.total_profit())
34417.80960086067
  • Generate 1,000 strategies with random signals and test them on BTC and ETH:
import numpy as np

symbols = ["BTC-USD", "ETH-USD"]
data = vbt.YFData.download(symbols, missing_index="drop")
price = data.get("Close")

n = np.random.randint(10, 101, size=1000).tolist()
pf = vbt.Portfolio.from_random_signals(price, n=n, init_cash=100, seed=42)

mean_expectancy = pf.trades.expectancy().groupby(["randnx_n", "symbol"]).mean()
fig = mean_expectancy.unstack().vbt.scatterplot(xaxis_title="randnx_n", yaxis_title="mean_expectancy")
fig.show()

  • For hyperparameter optimization fans: test 10,000 window combinations of a dual-SMA crossover strategy on BTC, ETH, and XRP:
symbols = ["BTC-USD", "ETH-USD", "XRP-USD"]
data = vbt.YFData.download(symbols, missing_index="drop")
price = data.get("Close")

windows = np.arange(2, 101)
fast_ma, slow_ma = vbt.MA.run_combs(price, window=windows, r=2, short_names=["fast", "slow"])
entries = fast_ma.ma_crossed_above(slow_ma)
exits = fast_ma.ma_crossed_below(slow_ma)

pf = vbt.Portfolio.from_signals(price, entries, exits, size=np.inf, fees=0.001, freq="1D")

fig = pf.total_return().vbt.heatmap(
    x_level="fast_window", y_level="slow_window", slider_level="symbol", symmetric=True,
    trace_kwargs=dict(colorbar=dict(title="Total return", tickformat="%")))
fig.show()

Inspect any strategy configuration by indexing with pandas:

print(pf[(10, 20, "ETH-USD")].stats())
Start                          2017-11-09 00:00:00+00:00
End                            2026-01-03 00:00:00+00:00
Period                                2978 days 00:00:00
Start Value                                        100.0
End Value                                    1604.093789
Total Return [%]                             1504.093789
Benchmark Return [%]                          866.094127
Max Gross Exposure [%]                             100.0
Total Fees Paid                               204.226289
Max Drawdown [%]                               70.734951
Max Drawdown Duration                 1095 days 00:00:00
Total Trades                                          81
Total Closed Trades                                   80
Total Open Trades                                      1
Open Trade PnL                                -14.232533
Win Rate [%]                                       41.25
Best Trade [%]                                120.511071
Worst Trade [%]                               -27.772271
Avg Winning Trade [%]                          27.265519
Avg Losing Trade [%]                           -9.022864
Avg Winning Trade Duration    32 days 20:21:49.090909091
Avg Losing Trade Duration      8 days 16:51:03.829787234
Profit Factor                                   1.275515
Expectancy                                     18.979079
Sharpe Ratio                                    0.861945
Calmar Ratio                                    0.572758
Omega Ratio                                      1.20277
Sortino Ratio                                   1.301377
Name: (10, 20, ETH-USD), dtype: object

Same goes for plotting:

pf[(10, 20, "ETH-USD")].plot().show()

It's not all about backtesting! VectorBT can also help with financial data analysis and visualization.

  • Create a GIF that animates Bollinger Bands %B and bandwidth across multiple symbols:
symbols = ["BTC-USD", "ETH-USD", "XRP-USD"]
data = vbt.YFData.download(symbols, period="6mo", missing_index="drop")
price = data.get("Close")
bbands = vbt.BBANDS.run(price)

def plot(index, bbands):
    bbands = bbands.loc[index]
    fig = vbt.make_subplots(
        rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.15,
        subplot_titles=("%B", "Bandwidth"))
    fig.update_layout(showlegend=False, width=750, height=400)
    bbands.percent_b.vbt.ts_heatmap(
        trace_kwargs=dict(zmin=0, zmid=0.5, zmax=1, colorscale="Spectral", colorbar=dict(
            y=(fig.layout.yaxis.domain[0] + fig.layout.yaxis.domain[1]) / 2, len=0.5
        )), add_trace_kwargs=dict(row=1, col=1), fig=fig)
    bbands.bandwidth.vbt.ts_heatmap(
        trace_kwargs=dict(colorbar=dict(
            y=(fig.layout.yaxis2.domain[0] + fig.layout.yaxis2.domain[1]) / 2, len=0.5
        )), add_trace_kwargs=dict(row=2, col=1), fig=fig)
    return fig

vbt.save_animation("bbands.gif", bbands.wrapper.index, plot, bbands, delta=90, step=3, fps=3)
100%|██████████| 31/31 [00:21<00:00,  1.21it/s]

This is just the tip of the iceberg. Visit the website to learn more.

:link: Links

:balance_scale: License

This work is fair-code distributed under the Apache 2.0 with Commons Clause license.

The source code is open, and everyone (individuals and organizations) may use it for free. However, you may not sell products or services that are primarily this software.

If you have questions or want to request a license exception, please contact the author.

Installing optional dependencies may be subject to a more restrictive license.

:star: Star History

Star History Chart

:warning: Disclaimer

This software is for educational purposes only. Do not risk money you cannot afford to lose.

USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vectorbt-0.28.4.tar.gz (486.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

vectorbt-0.28.4-py3-none-any.whl (420.7 kB view details)

Uploaded Python 3

File details

Details for the file vectorbt-0.28.4.tar.gz.

File metadata

  • Download URL: vectorbt-0.28.4.tar.gz
  • Upload date:
  • Size: 486.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for vectorbt-0.28.4.tar.gz
Algorithm Hash digest
SHA256 4810815fe23cfa440c0dcc17b3f56e1e09cfbbc74de541000706980b298cbbb3
MD5 9d64c0270b2dbd28d2f5e2935429a0b2
BLAKE2b-256 fcf35d776cf70980045a1ff6aa3e5e33f172eae9bfd1a455e540247098c63b9a

See more details on using hashes here.

Provenance

The following attestation bundles were made for vectorbt-0.28.4.tar.gz:

Publisher: python-publish.yml on polakowo/vectorbt

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file vectorbt-0.28.4-py3-none-any.whl.

File metadata

  • Download URL: vectorbt-0.28.4-py3-none-any.whl
  • Upload date:
  • Size: 420.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for vectorbt-0.28.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5af539e896114f184908f4a7f7582224edb642f8e93a4f50b899c3b07af3ec27
MD5 c683d99943adb1f86d0ae72007749c7b
BLAKE2b-256 4fe07f56bf5c2f7d984939061b736ac00bffcc12e802e4502147d20d972da81e

See more details on using hashes here.

Provenance

The following attestation bundles were made for vectorbt-0.28.4-py3-none-any.whl:

Publisher: python-publish.yml on polakowo/vectorbt

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page