Includes various adwords elements diagnosis functions
Project description
yz
Includes various adwords elements diagnosis functions
To install: pip install yz
Overview
The yz package provides a collection of functions designed to assist in diagnosing and analyzing data related to AdWords and other similar datasets. The functions in this package help in understanding the structure and characteristics of data frames, performing statistical analysis, and formatting output for reporting and inspection.
Features
- Data Diagnostics: Analyze data frames to extract information about columns, such as data types, unique values, and non-null counts.
- Comparison and Filtering: Functions to filter and compare data based on specified conditions.
- Statistical Analysis: Aggregate and normalize data for detailed statistical insights.
Functions
diag_df(df)
Analyzes a DataFrame to provide a summary of each column including data type, a non-null example value, count of unique values, non-zero values, and non-NaN values.
Usage Example:
import pandas as pd
df = pd.DataFrame({
'A': [1, 2, None, 4],
'B': ['a', 'b', 'b', 'c']
})
summary = diag_df(df)
print(summary)
numof(logical_series)
Counts the number of True values in a logical series.
Usage Example:
import pandas as pd
data = pd.Series([True, False, True, True])
count = numof(data)
print(count) # Output: 3
pr_numof(data, column=None, op=ge, comp_val=0, str_format='sparse', op2str=None)
Prints the number of elements in a specified column of a DataFrame that meet a comparison condition.
Usage Example:
import pandas as pd
df = pd.DataFrame({'Age': [25, 30, 35, 40]})
pr_numof(df, column='Age', op=ge, comp_val=30)
cols_that_are_of_the_type(df, type_spec)
Returns a list of columns where the type of the first element matches the specified type or meets a condition defined by a function.
Usage Example:
import pandas as pd
df = pd.DataFrame({
'name': ['Alice', 'Bob'],
'age': [25, 30]
})
cols = cols_that_are_of_the_type(df, int)
print(cols) # Output: ['age']
get_unique(d, cols=None)
Returns a DataFrame with unique rows based on specified columns.
Usage Example:
import pandas as pd
df = pd.DataFrame({
'A': [1, 1, 2],
'B': [2, 2, 2]
})
unique_df = get_unique(df)
print(unique_df)
print_unique_counts(d)
Prints the count of unique values for each column in the DataFrame.
Usage Example:
import pandas as pd
df = pd.DataFrame({
'A': [1, 1, 2],
'B': ['x', 'y', 'x']
})
print_unique_counts(df)
mk_fanout_score_df(df, fromVars, toVars, statVars=None, keep_statVars=False)
Creates a DataFrame that scores fan-out relationships between variables.
Usage Example:
import pandas as pd
df = pd.DataFrame({
'Company': ['A', 'A', 'B'],
'Product': ['X', 'Y', 'X'],
'Sales': [100, 150, 200]
})
score_df = mk_fanout_score_df(df, fromVars=['Company'], toVars=['Product'])
print(score_df)
Installation
To install the yz package, run the following command:
pip install yz
This package is essential for data scientists and analysts working with complex datasets, providing tools to simplify data diagnostics and analysis.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file yz-0.0.5.tar.gz.
File metadata
- Download URL: yz-0.0.5.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3e2a4a2d7c7957f0346f393e4cf4d528284e6ee92bd02cef991b5470bee3d857
|
|
| MD5 |
71821d8e8810f617dbf4387e42b74666
|
|
| BLAKE2b-256 |
ce050cf47d370ad3fa9dfca79515a951329fe310b0c688892dda6bbbf9de474e
|
File details
Details for the file yz-0.0.5-py3-none-any.whl.
File metadata
- Download URL: yz-0.0.5-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.10.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
dee74fdcb706e3f9492238c8de6a95d7307b0ea5c03f4e57480f8ed1f5a19a8e
|
|
| MD5 |
73a9c23e5192f4777ff2031947f538a5
|
|
| BLAKE2b-256 |
cb50bb24c1033ef83410f3b9f81275ad820bf1377649c0aac25b4426a5d38fdb
|